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1 Forewords 

1.1 Introduction 

This document presents a technical report of the project n°202000783 “Tools for mathematical 
optimisation of strategic railway timetable models” funded by the Norwegian Railway Directorate 
(Jernbanedirektoratet) and carried out by TrenoLab and Gustave Eiffel University. 
To maximise the benefit of passengers and rail freight customers, the Norwegian Railway 
Directorate (Jernbanedirektoratet) and other railway agencies rely heavily on strategic timetables to 
identify necessary new or upgraded infrastructure and rolling stock. When converting a set of 
conceptual railway service requirements into a feasible timetable, the planners must balance several 
conflicting objectives, such as travel time, capacity utilisation and robustness. The timetabling 
process is time- and resource-consuming, and it often must be carried out for a significant number 
of different concepts, studying multiple alternatives for each concept. Automatisation (at least 
partial) of this process will therefore significantly improve planners’ productivity in performing such 
tasks as capacity studies and strategic timetable planning. 
The aim of the current research project is to develop a prototype tool to automatically generate 
timetable draft, called Multi-Objective Automatic Timetable Generator (ATMO). This document 
describes the algorithmic core of the tool, articulated into a Multi-Objective Ant Colony 
Optimisation (MOACO) algorithm and a Mixed Integer Linear Programming (MILP) formulation, 
the adopted data model for input and output, as well as a set of application case studies. The 
document is structured as follows: Section 1.3 presents a literature review about strategic timetabling 
and timetable-based railway capacity analysis, while Sections 2.1 and 2.2 describe the adopted data 
model and the relevant formulation for the TTP. Section 2.3 provides an overview on the adopted 
algorithmic framework, while Section 3 extensively describes the developed MOACO algorithm. 
The integration between MOACO and MILP formulation is addressed in Section 4. Numerical 
experiments are presented and discussed in Section 5 and conclusions are drawn in Section 6, 
proposing possible future developments of the tool and its algorithmic core. Section Errore. 
L'origine riferimento non è stata trovata. illustrates an implementation plan for the tool. Finally, 
Appendix A reports the specifications of the input/output data format. 

1.2 Strategic timetabling and the TTP 

Timetable planning requires looking at infrastructure capacity as a limited resource that can be 
exploited in different ways. Our framework is based on a multi-objective approach to provide the 
user with a set of timetables representing an approximation of a Pareto-Optimal Set (POS) in the 
objective functions (hyper-) space. The POS represents the best-found ways to exploit the available 
capacity, and is constituted by a set of non-dominated solutions, each solution being a timetable. 
The developed tool therefore implements this approach, thanks to an algorithmic core based on a 
novel multi-objective ant colony optimisation algorithm. 
The Train Timetable Problem (TTP) is a classical problem in the field of Operations Research. It is 
notoriously NP-hard, meaning that for large instances exact methods likely fail to return the optimal 
solution in a reasonable time. No guarantee exists to find even high-quality feasible solutions 
quickly. Here, the size of practical interest instances is typically “large”. Furthermore, exact methods 
as those based on an integer linear programming formulation tackled by commercial solvers cannot 
manage Paretian multi-objective optimisation within a single algorithm run. To this purpose, they 
need to be run repeatedly, involving significant time consumption. 
Metaheuristics are algorithmic principles that can be instantiated to tackle virtually any optimisation 
problem. They have proven to be effective in tackling combinatorial NP-hard problems as the TTP. 
On one hand, they can provide rather “good” solutions within a reasonable computation time. 
Furthermore, they can be easily extended to perform multi-objective optimisation, and in particular 
to search for a POS of solutions. On the other hand, they often rely on sets of parameters that shall 
be carefully tuned, and they cannot ensure the solution’s optimality. 
In our approach, we exploit both the metaheuristic and exact perspectives, by combining a Multi 
Objective Ant Colony Optimisation algorithm and a Mixed Integer Linear Programming formulation 
tackled by a commercial solver. We adopt ACO for three main reasons. First, it suits well the 
resolution of the TTP since it builds solutions incrementally, thus mimicking real-practice timetables 
planning. This will foster the understanding and acceptance of the way the ATMO works by 
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practitioners. Second, it features effective exploration capabilities thanks to the blended exploitation 
of memory from past iterations (pheromone trails) and local information. On the one hand, 
pheromone trails can capture the implicit bonds between different choices eliminating the need for 
modelling them explicitly. On the other hand, local information can be provided by well-known 
timetable KPIs. Third, ants generate and maintain populations of solutions, which fits particularly 
well Paretian multi-objective optimisation. A consolidated literature background describes how to 
extend ACO to this purpose. 

1.3 Bibliographical framework 

1.3.1 Strategic timetabling and estimation of railway capacity 

According to Abril et al (2008) strategic timetabling is a topic closely related to the estimation of 
railway capacity, the latter being estimated by means of the maximum number of trains which can 
be operated on a given railway infrastructure, within a certain time window and with given operative 
constraints. In practice, the capacity indicator shall be carefully formulated, since it strongly depends 
on several operative parameters like the traffic mix, the utilised rolling stock and the minimum level 
of service required by commercial needs (KFH Group, 2013). As a result, an absolute definition of 
railway capacity does not exist, as stated by the International Union of Railways: “The capacity of 
the railway infrastructure is not static, it depends on the way it is utilised” (UIC 2013). Because of 
such relativity, it is not possible to define a univocal method to evaluate railway capacity, instead a 
number of methods have been formulated in the last 50 years, each of them addressing a particular 
application range (see Kontaxi and Ricci, 2009).       
Simulation-based methods represent a general-purpose approach and are not limited to particular 
application cases. They are normally based on an explicit model of the railway system, whose 
granularity can range between microscopic and macroscopic. The granularity of the model likely 
affects the overall accuracy, and can be used to scale studies based on a simulation approach. On 
one hand, simulations reproduce the railway traffic behaviour, considering several technical and 
operative constraints as well as stochastic phenomena as perturbations. On the other hand, the setup 
of these models (mainly if with microscopic granularity) requires a significant amount of input data, 
which, as highlighted by Liebchen and Schülldorf (2019), could not be always and completely 
available. These data are then handled by simulation algorithms, which can be affected by significant 
processing times and by the risk of not converging because of the occurrence of deadlock conditions. 
For instance, Khoshniyat and Törnquist Krasemann (2017) report some case studies in which 
convergence is not reached, highlighting how this could be a serious issue in practical applications. 
Analytical methods provide a trade-off between model complexity, amount of required input data      
on one side and results accuracy and reliability on the other. The analytical method proposed by the 
UIC leaflet 406 (UIC, 2004) is adopted by several European Infrastructure Managers to calculate 
the capacity consumption of a given working timetable (Pouryousef and Lautala., 2015; Weik, et 
al., 2019). This method is of straightforward implementation with simple application cases, namely 
those of linear networks where full-line operation is prevalent (UIC, 2004 reports a typical 
application case). 
Consolidated literature sources (Landex and Jensen, 2013; Lindner, 2011) agree upon the 
unsuitability of the UIC method to assess complex infrastructure topologies, like those of large 
stations or of highly interconnected railway nodes. Even the 2nd edition of the leaflet (UIC, 2013), 
which expands the capacity assessment of nodes, still presents recognised weaknesses (Weik, et al., 
2019; Bešinović, 2018). In these cases, the reciprocal interdependence of several possible 
alternatives routes severely affects the simultaneous operation of trains in the same node area. 
Furthermore, additional technical and operative constraints could apply, which are not normally 
present in full-line operations. This behaviour cannot be properly grasped by analytical methods like 
the UIC one, thus resulting in a potential inaccuracy of the results. 
Hansen (2000) points out how the application of analytical methods to large stations or nodes shall 
be supported by further empirical considerations drawn from real traffic data. In these cases, 
simulations can be used as a validation of the results. 
In general, simulation methods represent the best and possibly the only universally valid approach 
to consistently analyse the capacity of complex railway nodes. Several simulation methods are 
available, most of them embedded in calculation packages under commercial licensing. In general, 
these packages are conceived and designed with synchronous simulation in mind. On the one hand 
they provide several and powerful functionalities for simulating and analysing a given timetable 
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(assumed as feasible), possibly considering traffic perturbations. On the other side, they require a 
timetable to be entered as an input, and provide rather a “validation” of this timetable. Pouryousef 
et al. (2015) provide two extensive and comprehensive reviews about these tools. Simulation tools 
do not normally include tools for the automatic generation of feasible timetables; even if some 
remarkable exceptions can be found. Such functionalities are however normally limited to automatic 
fine-grane refinements of timetables, as the so-called conflict solving: given an already arranged 
timetable with residual conflicts, the tool removes them varying paths in a neighbourhood of the 
previded ones. Relevant literature can be found in Weymann and Nießen (2015)  and Maurer et al. 
(2021) 

1.3.2 The Train Timetabling Problem 

Railway traffic simulation models can be used to arrange input datasets for the resolution of the 
Train Timetabling Problem (TTP, Hansen and Pachl, 2014). This classical problem in the field of 
operation research consists in defining the arrival and departure times of trains in stations and in 
selecting their routing across the network. In the bargain, a solution of the TTP is normally 
represented by a timetable which is optimal according to one or more objective functions (e.g., 
minimisation of the total travel time, minimisation of the total connection time, etc.) and which 
respects a set of constraints. In some models, a controlled violation of certain constraints is accepted. 
Constraints can be roughly classified into technical and operative ones. The firsts make the resulting 
timetable feasible, i.e. ensure that in real operation trains can respect their schedule, at least in 
absence of traffic perturbations (Goverde and Hansen, 2013). Operative constraints foster the 
compliance with commercial or organisational needs (passenger connections and transfer times, 
crew and rolling stock rostering, etc.). 
Several approaches have been pursued to solve the TTP, as Mixed Integer Linear Programming 
(MILP) formulations or meta-heuristic techniques. Cacchiani et al. (2016) provide an extensive and 
up-to-date review about this topic, while Caimi et al. (2017) describe various modelling and solution 
methods for solving railway timetabling problems. In the remaining of this Section some examples 
of projects and software tools used for the automatic generation of feasible timetables are presented 
and discussed. 
A particular declination of the TTP is the railway timetable saturation problem (TSP), consisting in 
the generation of feasible timetables which exploit all the available capacity (Delorme et al., 2001). 
This is normally accomplished by maximising the number of scheduled paths, i.e. inserting 
additional courses into a given timetable while respecting given technical and operative constraints. 
Even if this is the common acceptation of the concept of timetable saturation, we should remark that 
all the available capacity could be exploited also without inserting any additional path, for instance 
by re-arranging an existing timetable inserting extra stability margins. With this meaning, a 
timetable is saturated when all available capacity is used. 
By analysing a timetable assumed as saturated through a proper set of KPIs it is possible to get a 
numerical quantification of the capacity of the system. In this way a saturated timetable depends on 
both technical constraints (which are considered invariant) and operative ones. The latter would 
define just one of the several different ways in which the system can be operated. As a result, 
capacity shall not be represented by a set of punctual values of the aforementioned KPIs, but rather 
by their variation ranges. A review of the saturation method proposed so far is presented in Coviello 
et al. (2017). Two of the most recent contributions are those by Pellegrini et al. (2017) and by 
Peterson et al. (2019). The first presents a saturation method based on a MILP formulation which 
produces saturated timetables with guaranteed optimality (provided that the computation time does 
not exceed a given upper bound). This formulation relies on a microscopic model of railway 
operations, directly obtainable from microsimulations, with a high accuracy of the relevant results. 
The model is solved with the commercial solver CPLEX. Peterson et al. (2019) tackle the saturation 
problem using an extended algorithm for thick paths search in polygonal domains. This algorithm 
provides optimal solutions, but relies on a rather aggregate data model which necessarily entails a 
loss of accuracy.  
Strategic timetabling requires an approach similar to timetable-based capacity analysis. In early-
stage timetable planning, timetable requirements (and operation constraints) are normally only 
partially defined, meaning that a variety of optimal solutions can be designed to fulfil them. The task 
is therefore to provide the planner with the whole set of optimal timetables, each of them qualified 
by the values of the considered KPIs. 
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The open railway market is encouraging European Infrastructure Managers to carefully define and 
quantify the capacity of the relevant railway systems, together with the possible optimal ways to 
fully exploit it (Schupbach et al., 2017). Railway Operators, who are confronting themselves with a 
growing competition, apply for more capacity both in terms of number of train paths and of their 
commercial requirements (Broman, Eliasson, & Aronsson, 2019). The application of advanced 
methods for evaluating capacity represents a key action for a better exploitation of railway networks. 
Nowadays, significant research efforts are being carried on in order to improve the methods and the 
algorithms devoted to the solution of the TTP. Main current issues concern their actual applicability 
to real case studies, characterised by big-sized problem instances. For instance, Jordi et al. (2019) 
experiment different approaches proposed in literature to test their quality and performance. The 
aim of this activity is to find the best solution to implement an integrated capacity planning tool for 
the Swiss Railways. The study highlights how the capability to solve big-sized problem instance 
(e.g., the whole Swiss network) is one of the main problems encountered. Other major issues are 
reported by Bešinović (2018), which describes how existing integrated timetabling approaches lack 
in efficiency, stability, feasibility or robustness of solutions. In general, as stated by Lamorgese 
(2017) exact resolution of TTP models is often impossible, and even to found feasible solutions in 
a reasonable time is a difficult task. To this purpose, decomposition techniques in combination with 
heuristics are often adopted, as in Goverde et al. (2016) and Lamorgese et al. (2017). This is also 
the approach followed in the present research, where a metaheuristic MOACO algorithm provides 
a fast-but-coarse exploration of the solutions’ space, and a MILP formulation performs a further 
refinement of solutions. 

2 Model and algorithm 

2.1 Infrastructure data model 

The ATMO transforms a so-called service concept into a working, feasible timetables. A service 
concept is a set of conceptual railway service requirements and it’s basically a raw timetable draft 
which provides the number and type of trains that have to figure in the working timetables, 
respecting given technical and operational constraints. 
We adopt a macroscopic model for infrastructure and operations, based on a multigraph 𝒢 = (𝒱, ℰ). 
Nodes represent timing locations (stations, junctions, halts) in the rail network. For each node ℓ ∈
𝒱 we define: 

• A set of tracks 𝓉 ∈ 𝒯ℓ, one of which is identified as the main one; 
• An additional running time ∆𝑟𝑡"#𝓉  if a track 𝓉 different from the main one is used by a 

rolling stock 𝑟𝑠 (0 in case of using the main track); 
• For any each track, a minimum separation time between the end of the occupation by a 

train and the beginning of the occupation by the following one 𝑡𝑔ℓ, providing that each 
track can be used by at most one train at time. 

Edges are line stretches connecting consecutive timing locations. Edges can be mono- or bi-
directional, and more than one edge can connect the same pair of consecutive stations. Any edge 
ℯ ∈ ℰ is represented by ℯ = 2ℯ, ℯ, 𝑗4, where the origin and destination of ℯ are in the set of nodes 
(ℯ, ℯ ∈ 	ℰ) and 𝑗 is an index in [1, 𝐽ℯ] to distinguish different edges connecting the same pair of nodes 
(for example to represent the presence of multiple-track line). A set of rolling stock types 𝑟𝑠 ∈ 𝑅𝑆 
can travel on a line stretch. A rolling stock cross each location in two different modes 𝛾 ∈
{𝑃𝐴𝑆𝑆, 𝑆𝑇𝑂𝑃} (passing or stopping). Therefore, four type of events can characterise the traveling 
along a line stretch, depending on the so-called edge extremity events (EEE). These can be pass/pass, 
pass/stop, stop/pass, stop/stop: 𝜀 ∈ 𝐸𝐸𝐸 is a pair indicating what event occurs at the origin and at 
the destination node, respectively.  
On an edge ℯ ∈ ℰ we have: 

• A technical minimum run time 𝑚𝑟𝑡ℯ,'(",)"#  depending on the rolling stock of the train (𝑟𝑠 ∈
𝑅𝑆), on the direction it is travelling into (𝑑𝑖𝑟) and on the EEE chosen (𝜀 ∈ 𝐸𝐸𝐸). This run 
time includes the running time in both extreme nodes if the main track is used; 

• A maximum energy consumption corresponding to the minimum technical run time 
𝑚𝑒𝑐ℯ,'(",)"#  depending on the rolling stock of the train (𝑟𝑠 ∈ 𝑅𝑆), on the direction it is 
travelling into (𝑑𝑖𝑟) and on the EEE chosen (𝜀 ∈ 𝐸𝐸𝐸); 

• A minimum headway 𝑚ℎℯ,'(",)!,)"
"#!,"#"  between the entrance of pairs of trains running in the 

same direction 𝑑𝑖𝑟 . It depends on the rolling stock of the two trains ( 𝑟𝑠*  and 𝑟𝑠+ 
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respectively) and of the EEE of each train (𝜀*, 𝜀+ ∈ 𝐸𝐸𝐸). The value of 𝑚ℎℯ,'(",)!,)"
"#!,"#"  is to 

be considered if the train with rolling stock 𝑟𝑠* passes first.  
• For trains running in opposite direction on a bi-directional edge (single track line), the 

minimum headway is imposed at the passage at the same extremity of the edge, which for 
one train will be the origin and for the other the destination. It depends on the direction 𝑑𝑖𝑟 
of the train passing first: it is 𝑚ℎℯ,'(",ℯ for the origin node along this direction, and 𝑚ℎℯ,'(",ℯ 
for the destination. 

In our model trains can be scheduled with running times greater than the minimum technical ones. 
We adopt a linear relationship to model the relevant variation of energy consumptions and headways 
between trains running into the same direction. If for a given rolling stock 𝑟𝑠 ∈ 𝑅𝑆 a run time 𝑟𝑡 >
𝑚𝑟𝑡ℯ,'(",)"#  is chosen, the energy consumption is reduced by 𝑘𝑒𝑐ℯ,'(""# ∙ 2𝑟𝑡 − 𝑚𝑟𝑡ℯ,'(",)"# 4, i.e. 
 

𝑒𝑐 = 𝑚𝑒𝑐ℯ,'(",)"# − 𝑘𝑒𝑐ℯ,'(""# ∙ 2𝑟𝑡 − 𝑚𝑟𝑡ℯ,'(",)"# 4 Eq. 1 

For a pair of trains 𝑡* and 𝑡+ (using 𝑟𝑠* and 𝑟𝑠+ respectively), if the running time of the first train is 
higher than the minimum one, the headway is increased by 𝑘ℎℯ,'("

"#! ∙ 2𝑟𝑡* −𝑚𝑟𝑡ℯ,'(",)
"#! 4, i.e. 

ℎ,!,," = 𝑚ℎℯ,'(",)!,)"
"#!,"#" + 𝑘ℎℯ,'("

"#! ∙ 2𝑟𝑡* −𝑚𝑟𝑡ℯ,'(",)
"#! 4 Eq. 2 

2.2 Timetable data model 

Timetable input data describe the train services that shall be scheduled in the resulting timetables. 
This information is provided for each train group, being a train group set of periodic trains. Spare 
courses are modelled as single-train groups. Three types of groups can be defined: fixed groups 
represent a mere constraint to the timetabling process; movable group can be adjusted in time and 
space (station routing) to optimise the resulting timetables; optional group can also be de-activated 
by the algorithm. Priority is defined by means of a priority factor which weights the objective 
functions’ values. As it will be explained in Section 3, the MOACO algorithm works with discretized 
time. To this purpose, time discretization is defined for each group. This allows to perform a “fine” 
timetabling for certain groups only, and a “coarser” one for the remaining groups. 
Each group 𝑔 is characterised by: 

• The type 𝓉- ∈ {𝐹𝐼𝑋𝐸𝐷,𝑀𝑂𝑉𝐴𝐵𝐿𝐸, 𝑂𝑃𝑇𝐼𝑂𝑁𝐴𝐿}; 
• The period 𝑝-; 
• The number of trains belonging to the group 𝑛𝑡-; 
• The priority factor 𝑝𝑟- ≥ 1; 
• The journey 𝐽-, defined as the list of the pair of directed edges used by the group’s trains. 

We define with 𝑙 and 𝑙 the first and last locations (nodes) in 𝐽- respectively; 
• The time discretization 𝜑-. 

For each location (node) 𝑙 visited along the journey 𝐽-, the following constraints are defined by the 
service concept: 

• The minimum and maximum arrival times at 𝑙, 𝑎𝑟𝑟-,.  and 𝑎𝑟𝑟-,.  respectively. They are 
defined, for the first train of the group, only if 𝑙 ≠ 𝑙.  

• The minimum and maximum departure times from 𝑙, 𝑑𝑒𝑝-,. and 𝑑𝑒𝑝-,. respectively. They 
are defined, for the first train of the group, only if 𝑙 ≠ 𝑙. 

• The rolling stock used by the group’s trains on the edge leaving 𝑙, only if 𝑙 ≠ 𝑙; 
• The set Τ-,. of usable station tracks; 
• The set Γ-,. of usable pass/stop modes; 
• The minimum and maximum stop times 𝑠𝑡𝑜𝑝-,. and 𝑠𝑡𝑜𝑝-,.. Remark that is there is no 

mandatory stop at 𝑙 , we will have 𝑠𝑡𝑜𝑝-,. = 0 and 𝑠𝑡𝑜𝑝-,.  large constant. If stops are 
forbidden, then 𝑠𝑡𝑜𝑝-,. = 𝑠𝑡𝑜𝑝-,. = 0; 

• The minimum and maximum run times admitted for the group’s trains in the edge ℯ leaving 
𝑙 (only if 𝑙 ≠ 𝑙), 𝑟𝑡-,ℯ  and 𝑟𝑡-,ℯ; 

• The so-called periodicity tolerance 𝑡𝑜𝑙-,. ≥ 0 , defined as the maximum deviation (in 
absolute value) from a strictly periodic pattern admitted for the group’s trains in that 
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location. A tolerance set to 0 imposes that, in that location, arrivals and departures different 
the trains of the group are separated by exactly a multiple of the group’s period 𝑝-. 

2.3 ATMO architecture 

The ATMO tool developed in this research uses a multi-objective approach to identify timetables 
that best utilise available capacity to operate a specified traffic pattern. The tool exploits an 
algorithmic framework based on a novel Multi-Objective Ant Colony Optimisation (MOACO) 
algorithm and on a Mixed Integer Linear Programming (MILP) formulation.  

The MOACO algorithm quickly performs a wide-ranging exploration of the possible solution space. 
Timetables found by the MOACO are then refined using a MILP formulation. More specifically, a 
commercial MILP solver is used to identify possible local improvements to the timetables. Although 
ACO algorithms have already been applied in the train routing problem (Samà et al., 2016), the 
algorithmic framework proposed in this research is, to the best of our knowledge, a novel and 
original contribution in the field of mathematical optimisation applied to the entire routing-
scheduling problem.  

The combination of MOACO and MILP takes optimal advantage of each method’s strengths 
providing users with the Pareto Optimal Set (POS) of possible timetables in a reasonable 
computation time. Providing a set of timetables rather than single timetables is especially useful in 
the strategic timetable and network capacity planning, where comparison between alternatives is a 
crucial step. 

Finally, the Paretian multi-objective approach has a major practical advantage over methods where 
multiple objectives are blended together by weights in order to get a single objective function to be 
optimised. The latter are often significantly sensitive to the weights’ values, thus requiring a careful 
tuning to obtain sound results. Furthermore, estimates of the monetary value of units of each of our 
objectives can be affected by (also quite significant) error margins. 

The algorithmic framework generates timetables while attempting to optimise them according to the 
following five objectives: 

• 𝑇𝑇𝑇: Minimise total travel time of all trains. 
• 𝐸𝐶: Minimise total energy consumption. 
• 𝑆𝑇: Maximise timetable stability. 
• 𝑁𝑇𝑅: Maximise the number of optional trains that can be scheduled. 
• 𝐶𝐹𝐿: Minimise the number of residual traffic conflicts (optional, user can also choose 

to be provided with conflict-free timetables only). 
These objectives are computed by means of specific KPIs, calculated on the resulting timetables: 

1. Travel times are trivially calculated as the difference between the arrival time at a train’s 
last station and the departure time from the train’s first station. The total travel time is the 
weighted sum of the trains’ travel times, weights being given by groups’ priority factors. 

2. Energy consumption strictly depends on the running times of trains in each infrastructure 
edges, as well as on whether trains perform passes or stops in stations where both options 
are allowed. All energy consumption values are input data. The total energy consumption 
is the weighted sum of the trains’ energy consumptions, weights being given by groups’ 
priority factors. 

3. The total weighted number of optional trains scheduled is trivially computed, multiplying 
the number of trains of each optional group by its priority factor. 

4. Stability can be evaluated by means of several KPIs (Goverde and Hansen, 2013). For a 
strong integration within the ACO architecture, we consider a KPI that can be incrementally 
computed during the solution construction. Specifically, we maximise the minimum buffer 
time in the timetable. A buffer time is the time separation between two feasible consecutive 
utilisations of the same infrastructure resource (line stretch or station track) minus the 
minimum separation imposed between them (minimum technical headway). 

This multi-objective approach makes the ATMO especially useful for strategic planning because it 
supports planners in solving several types of problems including saturation studies, strategic 
exploration of draft timetables, fine-tuning of previously developed timetables, and capacity 
assessment of infrastructure alternatives. New objectives can be added, or substituted for the ones 
we have used, provided that the associated KPI can be calculated efficiently. For objectives with 
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several possible KPIs, the choice may depend on the application. One could even include more than 
one KPI for the same objective, e.g., to measure stability under different perspectives. 

Strategic planning consists of analysing and comparing various combinations of infrastructure and 
timetable concepts. Therefore, several different infrastructure models and timetables are entered into 
the tool. Once all the input data has been entered, the planner chooses which objective functions 
should be considered in developing the optimised timetables. Finally, the tool is used to create many 
timetables that meet the selected criteria. 

 

Figure 1. Global architecture of the algorithmic framework. Grey ovals represent data contents, blue 
rectangles processes and orange diamonds conditional switches. Solid arrows show the operations flows, 
dashed arrows show data flows. 

Figure 1 displays the architecture of the algorithm. Grey ovals represent data contents, blue 
rectangles processes and orange diamonds conditional switches. Solid arrows mark the operations 
flows, while dashed ones are data feedings. Starting from input data, the Multi-Objective ACO 
(MOACO) through multiple iterations maintains and updates a provisional POS. The best-so-far 
solutions in this POS guide the ACO search during subsequent iterations via the pheromone trails. 
The MILP formulation further improves these solutions. It plays a double role: first, it acts as a Local 
Search which refines some of the POS solutions during the MOACO search process. Alternatively, 
local search is performed by a simpler heuristic. The criterion for selecting the local search procedure 
is defined by the user. For example, MILP local search can be performed once every ten iterations. 
We anticipate here that the usage of MILP as a Local Search is only proposed in this paper, leaving 
its calibration and analysis to further research. Second, after the MOACO algorithm stops according 
to a termination criterion, the MILP formulation refines all the solutions in the POS before their 
presentation to the user. 
The MILP formulation deals with a model that is slightly different from the one considered by 
MOACO. 
On the one hand, conflict constraints (both in line stretches and in station tracks) are relaxed within 
the MOACO algorithm to improve its searching capability. In particular, MOACO uses an additional 
objective, i.e., the minimisation of conflicts. As it is explained in Section 3, priority is accorded to 
conflict minimisation with respect to the other objectives. Yet, some residual conflicts may remain 
in the MOACO timetables. They are solved (if possible) in the MILP stage, which considers conflict 
constraints as hard ones. 
On the other hand, MOACO enforces rigid regular intervals between trains of the same train group. 
This permits to dramatically speed-up the exploration. However, it makes it impossible to profit of 
periodicity tolerances (defined as input data) to solve conflicts and improve objective function 
values. In the MILP formulation, train paths are free to vary exploiting the abovementioned 
tolerances. Periodicity tolerance is a useful parameter for strategic planning. On one hand, strict 
periodicity is more attractive for passengers because precise clock-face schedules are easier to 
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remember. On the other, strict periodicity consumes extra capacity and therefore reduces the number 
of trains that can be operated especially for single track lines (Emery, 2010 and Coviello, 2014). 

3 A MOACO for the TTP 

3.1 Fundamentals of ACO 

Ant Colony Optimisation algorithms, first proposed by Dorigo in 1992, are based on the construction 
of feasible solutions performed by a set of agents (ants) during a certain number of iterations. At a 
given iteration, each ant builds its solution independently of the other ants. The construction of a 
feasible solution consists in the sequential selection of a set of nodes on a pre-defined construction 
graph. Each node of this graph is therefore referred to as a solution component. This approach suites 
directly discrete combinatorial problems, where a solution is naturally composed by a set of discrete 
components. In case of continuous problem (as the scheduling ones, where the time variable is likely 
to be considered), a discretization is required. In our approach, discretization is performed when the 
Time Expanded Graphs are defined (see Sections 3.2 and 3.6.1). 
In general, a solution can be a path or a clique on the construction graph, depending of the so-
called pheromonal strategy (PS). Given a partial solution (i.e. a set of components already 
selected), the choice of the next component to be added is performed within a set of candidates. 
The candidates are defined according to the pheromonal strategy (Solnon and Bridge, 2006): 

• In case of clique PS, the candidates are those nodes for which a linking edge exists with all 
the components already selected; 

• In case of path PS, the candidates are the neighbours of the last component of the partial 
solution. 

Each candidate is chosen according to the pseudo-random proportional rule, i.e. with a probability 
given by the weighted product of two factors 𝜏 and 𝜂 , called pheromonal and heuristic factors 
respectively.  
The pheromonal factor depends on a quantity, the virtual pheromone, which has been laid on the 
construction graph’s edges by some ants during previous iterations of the algorithm. Given that ants 
that laid pheromone were the best-performing ones in the relevant iterations (i.e. those which 
produced the better solutions), the pheromone represents a “memory” of the components that more 
frequently contributed to produce good solutions. On the other side, at each iteration the pheromone 
of all edges evaporates, i.e. decreases of a certain amount. In this way edges that are no more 
producing good solutions are more likely to be neglected. Evaporation and increment of the edges’ 
pheromone are performed at the end of each iteration, during the pheromone update step. 
The heuristic factor provides a local measure of the desirability of a candidate. It can be computed 
statically or dynamically. In case of static computation, it actually depends on an a-priori attribute 
of each edge. This is the more computationally efficient implementation, since the heuristic factor 
is calculated only once, during the definition of the construction graph. In case of dynamic 
computation, the heuristic factor depends on the partial solution built so-far, and therefore it has to 
be calculated each time a candidate is to be selected. 
At the end of each iteration, during the pheromone update step a set of ants is allowed to increment 
the pheromone on the edges of the respective solution. The definition of this set of ants is a crucial 
step. With non-elitist approaches, only the best-performing ants of the current iteration are allowed 
to lay pheromone. With elitist approaches, it is maintained a record of the best performing ants so-
far, and only a subset of them would contribute to update pheromone. 
In the following sections we will describe how this basis architecture: 

• Is developed onto two layer in order to tackle the TTP; 
• Is properly integrated in order to perform Multi-Objective optimisation. 

 

3.2 A two-layers architecture 

In this section, we provide an overview of our original Ant Colony Optimisation algorithm for the 
multi-objective automatic railway timetable generation. The proposed ACO is a multi-objective 
extension of the Max-Min Ant System algorithm. The designed ACO extension follows the 
guidelines proposed by López-Ibáñez and Stützle (2012) for multi-objective optimisation. 
In MOACO, we define a two-layer architecture. It applies to the TTP an approach already used for 
ACO applied to the Multi-Depot Vehicle Routing Problem (Yao et al. (2014)) and to the Course 
Timetabling Problem (Nothegger et al. (2012)). This two-layer architecture actually mimics the real-
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world timetabling procedure, performed mainly by hand by specialized timetable planners. Two 
basic actions can be identified in this procedure: 

A1. The selection of the next train group to be scheduled. Here we also include the decision 
whether to schedule or not an optional train. Two main criteria may guide this choice: 

a. The priority of each train group, with respect to the other ones. In principle a 
higher priority train should follow its ideal timetable path more than a lower 
priority one. A train scheduled before another one is likely to be designed closer 
to its ideal path since it is subject to fewer constraints. 

b. In case of optional train groups, the estimation of existing conflicts with already 
scheduled ones. This may lead to the decision of not-scheduling a train group in 
case it is believed that it would not fit into an already populated timetable. 

A2. The scheduling of a certain train group within a timetable already populated by previously 
set train-paths. The scheduling will actually define the arrival and departure times, as well 
as the utilised station track, of the train group in each station of its journey. 

In principle, an action A1 (selection of the next train group to be scheduled) is always followed by 
an action A2 (scheduling of the selected train group). A2 is skipped when A1 chooses not to schedule 
a certain train group. In reality, timetable planners iteratively repeat pairs of A1-A2 actions. 
Exploiting this architecture, we define two types of construction graph to be explored by artificial 
ants in MOACO.  
A Layer 1 graph is associated to actions of type A1. They concern the decision of which group of 
trains actually figure in the timetable and in which order they are scheduled.  
A set of Layer 2 graphs is associated to actions of type A2. These are time-expanded directed graphs 
(TEG). They refer to path schedule decisions, considering one group of trains in each graph, as 
proposed by De Fabris et al. (2014).  
Our ACO algorithm exploits this structure. We consider that a TTP solution (i.e. a railway timetable) 
is obtained by the combination of the following sub-solutions (SS): 

• A Layer 1 sub-solution 𝑆1, which models the sequence of actions A1, defining: 
o The trains actually scheduled in the resulting timetable; 
o The order in which these trains are scheduled. 

• A set of Layer 2 sub-solutions 𝑆2-, one for each scheduled train group 𝑔. Each of them 
describes how a train is actually scheduled, in terms of arrival/departure times, pass/stop 
event and used track in each station. 

A solution 𝑆 is therefore defined by  
𝑆 = i𝑆1, 𝑆2 = j𝑆2-, 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑	𝑔𝑟𝑜𝑢𝑝	𝑔mn 

Each SS is constructed by the virtual ants by exploring a dedicated construction graph, with its own 
pheromone trails and heuristic information. Specifically, each ant starts choosing a Layer 1 node, 
then, if this entails to schedule a group, it builds a path on the corresponding Layer 2 graph. Then 
the ant chooses the next Layer 1 node and the process isiterated. During the construction of the TEG 
path, interactions with already-built L2 solutions are taken into account This procedure continues 
until decisions are made for all groups at Layer 1. 
We model our MOACO after Max-Min Ant Systems (MMAS, Stützle and Hoos, 1997, 2000), an 
ACO variant which proved effective for a large number of different combinatorial problem. We 
implement a clique pheromonal strategy for Layer 1 (Solnon and Bridge, 2006), and a more classical 
path strategy for Layer 2. To the best of our knowledge, this hybridisation is a novel contribution to 
the field of ACO. 
The edges of the construction graphs are used to store pheromone. Each time a solution will be used 
to update the pheromone, it will be incremented by a certain 𝛿 on the edges of Layer 1 and Layer 2 
construction graphs used by that solution. 

3.3 Performing multi-objective optimisation 

We extend the MMAS approach to the multi-objective variant following the multi-colony 
architecture proposed by López-Ibáñez and Stützle (2012). In this section we describe the main 
points constituting such an architecture, which will then be recalled in following sections. 

3.3.1 Aggregation 

In a multi-colony architecture, ants are divided into subsets called colonies. Each colony features its 
own pheromone storage structures (one for each objective) and sets of aggregation weights. 
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Aggregation weights, defined in the interval [0,1] are used to blend together the pheromonal and 
heuristic information relevant to different objectives during the ants’ search. The blending is 
performed through the linear combination of the values relevant to different objectives. 
We define the set of objectives  

𝑂 = {𝑇𝑇𝑇, 𝐸𝐶,𝑁𝑇𝑅, 𝑆𝑇, 𝐶𝐹𝐿} Eq. 3 

 
and a colony ℂ/  for each objective 𝑜 ∈ 𝑂, on whose optimisation the colony’s ants will mostly 
focus. We call 𝑜 the colony’s main objective. For each colony ℂ/, we define a set Λ/ of 𝑁01(-2,# 
aggregation weights for the main objective as follows 
 

Λ/ = r𝜆/( = 1 − 21 − 𝜆4 ∙
𝑖 − 1

𝑁01(-2,# − 1 , 𝑖 = 1,… ,𝑁01(-2,#u Eq. 4 

 
𝜆 ∈ [0,1]	  being the minimum value in Λ/ . Weights in Λ/  are those used by colony ℂ/   for 
aggregating the objective 𝑜 during 𝑁01(-2,# consecutive iterations. If at iteration 𝑖𝑡𝑒𝑟 the colony 
uses the weight 𝜆/3

#$%&'(), at iteration 𝑖𝑡𝑒𝑟 + 1 it will use the weight 𝜆/* . At each iteration 𝑖𝑡𝑒𝑟, the 
weights for objectives 𝑜v ∈ 𝑂 − {𝑜}  (different from the colony’s main objective) are randomly 
chosen in such a way that   
 

𝜆/( + w 𝜆/4(
/4∈67{/}

= 1,𝑤𝑖𝑡ℎ	𝑖 = 𝑖(𝑖𝑡𝑒𝑟) 
Eq. 5 

 
This defines the set of weights Λ/(,1" used by that colony in that iteration. 
It may be pointed out that, according to this implementation, the higher 𝜆 is, the more the search of 
the colony ℂ/  is pushed towards the optimisation of its main objective, neglecting the other ones. 

3.3.2 Normalisation 

During aggregation, heuristic information relevant to different objectives is blended by means of the 
aggregation weights. This information is, in general, dimensionally different, and depends to each 
objective to be evaluated. For example, in our application we have time for TTT, energy for EC, 
units for NTR, time for ST and units for CFL. In general, also if heuristic information was 
dimensional consistent, their values may differ also of orders of magnitude.  
For these reasons, we introduce a sation step before the aggregating heuristic information. To this 
purpose, we take advantage of the main feature of the MMAS implementation, which limits the 
pheromone’s values between a lower and an upper bound, 𝜏:;3  and 𝜏:<=  respectively. The 
normalisation operator for a variable 𝑥  is defined as 

𝑛𝑜𝑟𝑚(𝑥, 𝑏𝑒𝑠𝑡, 𝑤𝑜𝑟𝑠𝑡) = 𝜏:<= −
𝑏𝑒𝑠𝑡 − 𝑥

𝑏𝑒𝑠𝑡 − 𝑤𝑜𝑟𝑠𝑡 ∙
(𝜏:<= − 𝜏:;3) Eq. 6 

Given a variable 𝑥, and its possible best and the worst values ever, the operator linearly interpolates 
𝑥 between the two bounds. It is worthwhile to highlight that for the operator it is indifferent whether 
𝑏𝑒𝑠𝑡 > 𝑤𝑜𝑟𝑠𝑡  or 𝑏𝑒𝑠𝑡 < 𝑤𝑜𝑟𝑠𝑡 . Therefore, it neglects the optimisation sense (minimisation or 
maximisation) relevant to the variable being normalised. 

3.3.3 Evaluation of the objective functions 

Given a solution  
𝑆 = i𝑆1, 𝑆2 = j𝑆2-, 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑	𝑔𝑟𝑜𝑢𝑝	𝑔mn 

We have that: 
• Sub-solution 𝑆1 is composed by a set of nodes on the Layer 1 construction graph; 
• Sub-solutions 𝑆2-  are composed by sets of edges on the relevant Layer 2 construction 

graphs. 
Each objective functions is therefore computed as follows: 
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𝑇𝑇𝑇(𝑆) = w w 𝑤(?,@),BBB
1(?,@)∈C+&D*!

& ∈C*∩F*!

 
Eq. 7 

𝐸𝐶(𝑆) = w w 𝑤(?,@),GF
1(?,@)∈C+&D*!

& ∈C*∩F*!

 
Eq. 8 

𝐶𝐹𝐿(𝑆) = w w 𝑤(?,@),FHI2Φ-4
1(?,@)∈C+&D*!

& ∈C*∩F*!

 
Eq. 9 

𝑇𝑇𝑇(𝑆) = w w 𝑤(?,@),CB2Φ-4
1(?,@)∈C+&D*!

& ∈C*∩F*!

 
Eq. 10 

𝑁𝑇𝑅(𝑆) = w 𝑤#*!
&

D*!
& ∈C*∩F*!

 
Eq. 11 

 
The reader is referred to the Sections 3.5 and 3.5.2 for an extensive description of the used notation. 
We anticipate here that: 

• 𝑤(?,@),BBB and 𝑤(?,@),GF are edge weights of the Layer 2 TEGs, relevant to the travel time 
and energy consumption respectively, which are statically calculated a-priori; 

• 𝑤(?,@),FHI2Φ-4 and 𝑤(?,@),CB2Φ-4 are edge weights of the Layer 2 TEGs, relevant to the 
conflicts number and time stability (minimum buffer time) respectively. They are 
dynamically calculated depending on the set of Layer 2 sub-solutions Φ- = j𝑆2-J ∶ 	 𝑆2-J ∈
𝑆2	 ∧ 𝑔′ ≺ 𝑔	m, relevant to the groups 𝑔J scheduled before 𝑔; 

• 𝑤#*!
&  are node weights on the Layer 1 graph, relevant to the number of trains belonging to 

each group, multiplied by the group’s priority factor. In case of during Layer 1 exploration 
a discard-group node is chosen, the relevant weight is equal to 0. 

3.3.4 Pheromone update 

The multi-objective approach leads to the implementation of a Paretian elitist strategy. The record 
of the best performing ants so far is implemented by the Pareto Optimal Set of the solution generated 
by those ants. This set is updated with the solutions generated by ants at each iteration, keeping in 
memory the non-dominated solutions only. Pheromone-updating solutions are then chosen within 
the POS according to the mechanism described in Section 3.8. 

3.4 Algorithm structure 

Pseudocode 1 describes the overall architecture of our MOACO algorithm for the TTP. This 
algorithm actually returns a Pareto Optimal Set (POS) of non-dominated solutions according to the 
given set of objective functions.  
The POS is firstly initialized to the empty set. Then iterations take place until a termination condition 
is met (depending on a maximum iterations number or a maximum elapsed time). In each iteration, 
each colony ℂ/ firstly updates its set of aggregation weights Λ/(,1". Then each ant of each colony 
starts its exploration of the construction graphs independently from the other ants. For this reason, 
the ants’ exploration can be easily parallelized. 
Once all ants have finished their exploration, each of them having built a solution, a Local Search 
procedure is applied to these solutions. Local Search performs a further, quick refinement of the 
iteration’s solutions. Finally, the POS is updated with the iteration’s solutions and the pheromone is 
updated in turn by a proper subset of the solutions stored in the POS. 
PROCEDURE multiObjectiveAntTTP 
POS = empty set 
iter = 1 
elapsedTime = 0 
while iIter <= maxIter and elapsedTime <= maxTime: 

iterSolutions = empty set 
 for each colony ℂ!: 
  update Λ𝑜𝑖𝑡𝑒𝑟 
  for each ant in ℂ!: 
   S{S1, S2}ant = ant_exploreLayer1() 
   add S{S1, S2}ant to iterSolutions 



 14 

 applyLocalSearch(iterSolutions) 
 update POS with iterSolutions 
 update pheromone with POS 
  

iter++ 
update elapsedTime 

return POS 

Pseudocode 1. Main architecture of the algorithm. 

As anticipated, the exploration of the construction graph by each ant is articulated into two layers. 
A node on the Layer 1 construction graph is selected, and depending on that node a certain Layer 2 
graph (i.e. a TEG) is explored immediately after. Following sections describe this process in details. 
Table 1 provides a summary of the MOACO parameters. 
 

𝑁𝑎𝑛𝑡 Number of ants per colony 𝜏'(),+, Lower pheromone bound in L2 
𝑚𝑎𝑥𝐼𝑡𝑒𝑟 Maximum number of iterations 𝜏'-.,+, Upper pheromone bound in 2 
𝑚𝑎𝑥𝑇𝑖𝑚𝑒 Maximum computation time 𝑁/012345 N° of main objective aggregation 

weights per colony 
𝛼+6 Pheromone information weight in L1 𝜆 Min. value of the aggregation 

weight of the colony’s main 
objective 

𝛽+6 Heuristic information weight in L1 𝑛7'-89 Smart mode usage period 
𝜌+6 Pheromone evaporation factor in L1 𝑛:-79 Fast mode usage period 

𝜏'(),+6 Lower pheromone bound in L1 𝑁;<= Number of updating solutions per 
region 

𝜏'-.,+6 Upper pheromone bound in L1 𝑝𝑐𝑆𝑜𝑙+7 Percentage of solution 
components refined by Local 
Search 

𝛼+, Pheromone information weight in 
Layer 2 

𝑛+7 Local search usage period 

𝛽+, Heuristic information weight in L2 𝑛>!+7 Local search not-usage period 
𝜌+, Pheromone evaporation factor in L2   

Table 1. Summary of the MOACO algorithm’s parameters. 

3.5 Layer 1 exploration 

3.5.1 Clique construction 

The exploration of Layer 1 defines the sub-solution 𝑆1, i.e., the sequence in which the groups are 
scheduled as well as, for optional groups only, whether the group is scheduled or not. We define a 
directed construction graph 𝐺I* = (𝑁I*, 𝐸I*)  whose set of nodes 𝑁I* = {𝑏I*} ∪ 𝐶I* ∪ 𝐷I*  is 
composed by: 

• A fictious begin node 𝑏I*; 
• A set 𝐶I* composed by the schedule nodes 𝑐I*

-  defined for each movable or optional 
group 𝑔; 

• A set 𝐷I* composed by the discard nodes 𝑑I*
-  defined for each optional group 𝑔. 

We say that a node 𝑑I*
-  is the dual of the node 𝑐I*

- , if it is relevant to the same optional group g, and 
vice-versa. We also define two sets of nodes, 𝑀I* and 𝑂I*, such that 

• 𝑁I* = {𝑏I*} ∪ 𝑀I* ∪ 𝑂I*; 
• 𝑀I* contains all the nodes relevant to the scheduling of a movable group; 
• 𝑂I* contains all the nodes relevant to the scheduling or the discarding of an optional group. 

Directed edges are defined between: 
• 𝑏I* and all the other nodes; 
• All the sorted pairs of schedule or discard nodes, with the exception of those pairs of 

nodes relevant to the same optional group. 
A clique in 𝐺I* is a Layer 1 solution. Figure 2 shows an example of graph and solution. Here, four 
train groups are given as input. Group 2 is optional. The bold clique on the graph shows that Group 
4 is scheduled first, before Group 1, Group 2, which is not actually scheduled, and Group 3. 
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Figure 2. Example of a Layer 1 graph with 3 movable and 1 optional train groups. Bold edges represent a 
solution-clique given by the sequence {S4, S1, NS2, S3}. The virtual begin node and the outgoing edges are 
omitted for readability. 

Pseudocode 2 implements the exploration of 𝐺I*. The begin node 𝑏I* is firstly inserted into the list 
𝑆1, containing the partial solution on Layer 1. The candidates set is initialized with all the nodes in 
𝑁I* − {𝑏I*}. Then the Overlap Index (see next Section 3.5.2) is computed for each edge 𝑒(𝑢, 𝑣) ∈
𝐸I*, 𝑢 ∈ 𝑆1, 𝑣 ∈ 𝐶𝐴𝑁𝐷. A candidate is now chosen according to the pseudo-random criterion, it is 
appended to 𝑆1 and removed from the candidates set. If its dual node exists, it is removed from the 
candidates set as well. Finally, if the chosen candidate belongs to 𝐶I*(it’s a schedule node), the 
procedure ant_scheduleGroup is invoked, which performs the actual scheduling of that group in 
Layer 2. 
PROCEDURE ant_exploreLayer1() 
S1 = [bL1] 
S2 = empty list 
candidates = NL1 – {bL1} 
While candidates is not empty: 
 For each v in candidates: 
  Compute oiv(S1) 
 ugL1 = randomly choose an item from candidates 
 remove ugL1 from candidates 
 if dual(ugL1) exists, remove it from candidates 
 append ugL1 to S1 
 If CL1 contains ugL1: # ugL1 is a scheduled node 

  S2g = ant_scheduleGroup(S2, g) 
  append S2g to S2 

Pseudocode 2. Exploration of the Layer 1 graph. 

Each node 𝑣 ∈ 𝑁I* − {𝑏I*} , relevant to the group 𝑔, is qualified by the heuristic information for the 
objective NTR, defined as a node weight: 
 

𝑤3BK,@	 = r𝑛𝑡𝑟- ∙ 𝑝𝑟-	𝑖𝑓	𝑣 ∈ 	𝐶I*
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 12 

 
At each choosing step, this is normalised according to Eq. 4,  

𝑤�3BK,@ = 𝑛𝑜𝑟𝑚2𝑤3BK,@	, 𝑏𝑒𝑠𝑡3BK , 𝑤𝑜𝑟𝑠𝑡3BK4 Eq. 13 

 
A second type of heuristic information is used during the Layer 1 exploration. Each time a new 
candidate node is to be chosen, each edge 𝑒(𝑢, 𝑣) ∈ 𝐸I*, 𝑢 ∈ 𝑆1, 𝑣 ∈ 𝐶𝐴𝑁𝐷, connecting a node 
already in the partial solution and one still to be chosen, is qualified by a heuristic information named 
Overlap Index 𝑜𝑖(?,@). OI estimates how much a group, still to be scheduled, would potentially be in 
conflict with an already scheduled one, being a conflict a simultaneous utilisation (or two utilisations 



 16 

not separated by a proper minimum headway) of the same infrastructure resource (line stretch, 
station track). In case of 𝑢 = 𝑏I* or {𝑢, 𝑣} ∩ 𝐷I* ≠ ∅,  𝑜𝑖(?,@) is equal to 0. Otherwise, 𝑜𝑖(?,@) is 
calculated according to the procedure described in Appendix 1. 
For each candidate 𝑣, we the define the value 𝑜𝑖@ as follows 
 

𝑜𝑖@ = 𝑜𝑖@(𝑆1) = w 𝑜𝑖(?,@)
?∈C*

 Eq. 14 

 
We assume that OI acts as a proxy for the objectives TTT, EC, ST, CFL. Two groups with high OI 
would likely originate residual conflicts, or, in case they can be avoided, their courses would be 
scheduled in such a way that: 

• The stability would be likely affected; 
• The total travel time would increase in order to avoid conflicts (e.g., due to station 

crossings); 
• The energy consumption would increase for the same reason (e.g. because of extra 

station stops for crossings). 
As a consequence of that, we assume that 
 

𝑤BBB,@	 = 𝑤GF,@	 = 𝑤CB,@	 = 𝑤FHI,@	 = 𝑜𝑖@(𝑆1) Eq. 15 

 
Where 𝑆1 is the Layer 1 sub-solution built so far. 
The overlap index is then normalised by applying the following equation 
 

𝑤�BBB,@	 = 𝑤�GF,@	 = 𝑤�CB,@	 = 𝑤�FHI,@	 = 𝑜𝚤� @(𝑆1) = 

w 𝑛𝑜𝑟𝑚(𝑜𝑖(?,@)
?∈C*

, 𝑏𝑒𝑠𝑡/( , 𝑤𝑜𝑟𝑠𝑡/() Eq. 16 

We first normalise each 𝑜𝑖(?,@) and then sum them for consistency with the way in which pheromone 
contribution is calculate, remembering that the normalisation operator returns a value in 
[𝜏:;3, 𝜏:<=]. Following the clique pheromonal strategy, the pheromone factor of each candidate 
𝑣 ∈ 𝐶𝐴𝑁𝐷 is the sum of the pheromone laying on the edges connecting the candidate to all the 
already chosen nodes,  
 

𝜏@ = 𝜏@(𝑆1) = w 𝜏(?,@)
?∈C*

 

The aggregated heuristic factor finally used is 
 

𝜂@ = 𝜂@(𝑆1) = 

= 𝜆3BK ∙ 𝑤�3BK,@ + w 𝜆/ ∙ 𝑤�/,@(𝑆1) =
/∈67{3BK}

𝜆3BK ∙ 𝑤�3BK,@ + (1 − 𝜆3BK) ∙ 𝑜𝚤� @(𝑆1) Eq. 17 

with  𝜆/ ∈ Λ(,1". 
Normalisation in Eq. 17 requires to provide the best and worst values. They are calculated as follows 
 

𝑏𝑒𝑠𝑡/( = �
𝑀𝐴𝑋2𝑜𝑖(?,@)(𝑆1)	, ∀𝑢 ∈ 𝑆1, ∀𝑣 ∈ 𝐶𝐴𝑁𝐷 ∩𝑀I*4	𝑖𝑓	𝑣 ∈ 𝑀I*

𝑀𝐼𝑁2𝑜𝑖(?,@)(𝑆1)	, ∀𝑢 ∈ 𝑆1, ∀𝑣 ∈ 𝐶𝐴𝑁𝐷 ∩ 𝑂I*4	𝑖𝑓	𝑣 ∈ 𝑂I*
 

𝑤𝑜𝑟𝑠𝑡/( = �
𝑀𝐼𝑁2𝑜𝑖(?,@)(𝑆1)	, ∀𝑢 ∈ 𝑆1, ∀𝑣 ∈ 𝐶𝐴𝑁𝐷 ∩𝑀I*4	𝑖𝑓	𝑣 ∈ 𝑀I*

𝑀𝐴𝑋2𝑜𝑖(?,@)(𝑆1)	, ∀𝑢 ∈ 𝑆1, ∀𝑣 ∈ 𝐶𝐴𝑁𝐷 ∩ 𝑂I*4	𝑖𝑓	𝑣 ∈ 𝑂I*
 

This definition of the heuristic factor produces the following effects. On one hand, in case of 
movable train groups, high-priority, highly-populated and highly-conflictive groups are favoured to 
be scheduled before other ones. Since a movable train group must be scheduled in any case, if it is 
already significantly conflictive, to schedule it before less conflictive groups would contribute to 
reduce residual conflicts. Differently, if it was scheduled lastly, residual conflicts are likely to 
increase. 
On the other hand, in case of optional train groups, a balance is implemented between the benefits 
of not to schedule the group (reduction of residual conflicts) and those of scheduling it (increase of 
the number of scheduled trains). To this purpose, lowly-conflictive “schedule” candidates are 
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favoured over highly-conflictive “schedule” candidates. During next choosing steps, an already 
highly-conflictive candidates would only increase its OI, thus increasing its probabilities to be 
discarded as well.  
Finally, at each construction step, the next node is randomly chosen from the candidates list with a 
probability 

𝑝@ =
𝜏@M*! ∙ 𝜂@

N*!

∑ �𝜏@JM*! ∙ 𝜂@J
N*!�@J∈F<3O

 Eq. 18 

 

3.5.2 Computation of the Overlap Index 

The overlap index estimates how much a yet to be scheduled train group would be conflictive with 
already scheduled ones. 
Given a set 𝑆̅ of already scheduled groups and a group 𝑔 to be scheduled, we denote as 𝑊 the set of 
already scheduled trains (belonging to groups in 𝑆̅) and 𝐶 the set of trains belonging to group 𝑔. 
Given two trains 𝑤 ∈ 𝑊 and 𝑐 ∈ 𝐶, we consider the infrastructure resources shared by the two, 
being a resource a line section or a station track. On each of them (𝔯), we calculate the conflict 
probability 𝑝𝑜𝔯,D,0 as the probability of having an overlap between the two “utilisation blocks” of 𝑤 
and 𝑐. An “utilisation block” represents the time a resource is utilised by a single train, and cannot 
be utilised by other ones for safety reasons. On the one hand, the utilisation block of 𝑤 is fixed, 
being 𝑤 already scheduled. It is defined by a start time 𝑢#,Q",,0 and an end time 𝑢1R',0. On the other 
hand, the start time of 𝑐’s utilisation block can vary within a set of feasible times �𝑢#,Q",,D , 𝑢#,Q",,D� 
depending on the train journey, stops and running time capabilities. Given this start time, the 
separation between utilisations of 𝑤 and 𝑐  can be computed. If it is smaller than the minimum 
headway time, computed accounting for travel directions, then a conflict occurs. If 𝑤 uses 𝔯 before 
𝑐, the minimum headway time is a constant, as it is a function of the first train travel and everything 
is already fixed for 𝑤. Otherwise, it depends on the speed and the EEE chosen for  𝑐 and it can vary 
in �ℎD , ℎD�.  Let ∆2= ℎD − ℎD  and ∆#,Q",= 𝑢#,Q",,D − 𝑢#,Q",,D   be the duration of the two relevant 
time intervals.  We assume that 𝑐 utilisation start time 𝑢#,Q",,D and minimum headway if 𝑐 precedes 
𝑤  ℎD  are two random variables with independent uniform distributions in the intervals 
�𝑢#,Q",,D , 𝑢#,Q",,D� and �ℎD , ℎD� respectively. 
The probability that the two blocks overlap is given by the probability that the combination of the 
choices of 𝑐 utilisation start time and minimum headway if 𝑐 uses  𝑟 first overlaps the utilisation by 
𝑤 and the minimum headway if the latter goes first. 𝑝𝑜𝔯,D,0 is equal to 0 if 𝑢#,D ≤ 𝑢#,0 or 𝑢1,0 ≤
𝑢#,D, otherwise we formalise it as 

�
1

∆#,Q",
∙ � �

1
∆2
𝑑ℎD

?),,S2,

?),#

�𝑑𝑢#,D

T

<

+ �
1

∆#,Q",
𝑑𝑢#,D

F

T

 Eq. 19  

With 

𝐴 = max	 �𝑢#,D	, 𝑢#,0 −	ℎD� Eq. 20  

𝐵 = min �𝑢#,D	, 𝑢#,0 −	ℎD� 
Eq. 21  

𝐶 = min2𝑢#,D , 𝑢1,04 
Eq. 22 

 
Eq. 19 can be reduced to: 
 

𝑝𝑜𝔯,D,0 =
𝑢#(U1,D − 𝑢#,Q",,0
∆#(U1∆#,Q",

(𝐵 − 𝐴) +
𝐵+ − 𝐴+

2∆#(U1∆#,Q",
+
𝐶 − 𝐵
∆#,Q",

 Eq. 23 

 
The overlap index 𝑜𝑖D,0 of a train to be scheduled 𝑐 with regards to an already scheduled one 𝑤 is 
defined as  
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𝑜𝑖D,0 = w 𝑝𝑜.,D,0
.∈FIC

+ w � w 𝑝𝑜V,D,0
V∈FBK)

�
1

�Τ-,.�#∈FCB

 Eq. 24 

 
Where 𝐶𝐿𝑆 and 𝐶𝑆𝑇 are the set of the line section and stations used by both 𝑐 and 𝑤 ,𝐶𝑆𝑇 is the set 
of stations used by both 𝑐 and 𝑤 , respectively. 𝐶𝑇𝑅#, for a station 𝑠 ∈ 𝐶𝑆𝑇, is the set of tracks used 
by both 𝑐 and 𝑤. This has always cardinality equal to 1, since the track for 𝑤 is already defined. 
Finally, �Τ-,.� is the cardinality of the set of available tracks in station 𝑠 for course 𝑐. 
The overlap index 𝑜𝑖-,C	of a group 𝑔 with respect to a set of already scheduled groups 𝑆̅ is computed 
as the sum of the overlap index for each pair of trains. 
 

3.6 Layer 2 exploration 

3.6.1 Definition of the Time Expanded Graph 

The exploration in Layer 2 produces the actual scheduling of a given train group. It is performed by 
choosing a path on a Time Expanded (directed) Graph (TEG). TEG’s nodes represent discrete 
timetable events for the first train of the group, i.e. the arrival (or departure) at (from) a certain 
station, at a certain time, at a certain station track, with or without a stop. The definition of discrete 
timetable events requires to discretize time. TEG’s directed edges represent transitions, in stations 
or line stretches. A station transition models a train stopping or passing at a certain station, while a 
line transition models a train travelling from a station to the following one. A path on the TEG 
completely describes the timetable of the first train of each group. During Layer 2 exploration, a 
path pheromonal strategy is implemented. Having assumed that trains of the same group are strictly 
periodic, the timetable of the other trains is simply obtained by shifting in time of multiple of the 
period the timetable of the first one. 
For group 𝑔, the TEG 𝐺I+

-  is defined by a set of nodes 𝑁I+
-  and a set of edges 𝐸I+

-  

𝐺I+
- = 2𝑁I+

- , 𝐸I+
- 4 Eq. 25 

For readability, in the following we omit the pedix “L2”. The set of nodes is defined as follows 
 

𝑁- = w2𝐴-,. +𝐷-,.4
.∈W&

 
Eq. 26 

 
For each location 𝑙 of the group’s journey 𝐽-,	𝐴-,. and 𝐷-,. are the arrival and departure node sets 
respectively. The elements of these sets are defined considering the lower and upper bounds for the 
arrival/departure event, the time discretization and the available station tracks and pass/stop events 
in that location. Notice that we have two exceptions to the following definitions for the first and last 
locations of the journey, 𝑙 and 𝑙 respectively. 
 

𝐴-,. = w w w 𝑎-,.,X,V,,
,YOB<KK&,-V∈Z&,-X∈[&,-

			∀	𝑙 ∈ 𝐽- − j𝑙m Eq. 27 

 
𝐷-,. = w w w 𝑑-,.,X,V,,

,YOBOG\&,-V∈Z&,-X∈[&,-

			∀	𝑙 ∈ 𝐽- − j𝑙m Eq. 28 

 
Where 𝑎-,.,V,, (𝑑-,.,V,,) represents the discrete arrival (departure) event node at (from) with pass/stop 
mode 𝛾 at track 𝜏 in location 𝑙 at time 𝑡, where Γ-,. is the set of available pass/stop modes at location 
𝑙 and Τ-,. the set of available station tracks. 
The sets 𝐷𝑇𝐴𝑅𝑅-,.   and 𝐷𝑇𝐷𝐸𝑃-,.  contain the available discretized times for the arrival and 
departure events: 
 

𝐷𝑇𝐴𝑅𝑅-,. = j𝑡 ∈ ℤ ∶ 𝑡	𝑚𝑜𝑑	𝜑- = 0	 ∧ 	𝑡 ≥ 𝑎𝑟𝑟-,. 	∧ 	𝑡 ≤ 𝑎𝑟𝑟-,.m Eq. 29 
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𝐷𝑇𝐷𝐸𝑃-,. = i𝑡 ∈ ℤ ∶ 𝑡	𝑚𝑜𝑑	𝜑- = 0	 ∧ 	𝑡 ≥ 𝑑𝑒𝑝-,. 	∧ 	𝑡 ≤ 𝑑𝑒𝑝-,.n Eq. 30 

 
Where:  

• 𝜑- is the time discretization for group 𝑔; 
• 𝑎𝑟𝑟-,. and 𝑎𝑟𝑟-,. are the lower and upper bounds respectively for the arrival at 𝑙; 
• 𝑑𝑒𝑝-,. and 𝑑𝑒𝑝-,. are the lower and upper bounds respectively for the departure from 𝑙; 

 
In the first and last locations of the journey these sets are defined as follows 

𝐷-,. = j𝑏-m Eq. 31 

𝐴-,. = j𝑓-m Eq. 32 

Where 𝑏- and 𝑓- are two fictious begin and end nodes respectively. 
Directed edges in 𝑒(𝑢, 𝑣) ∈ 𝐸I+

-  represent timetable transitions linking consecutive discrete 
timetable events. For each departure node from the first location 𝑙 𝑑-,.,X,V,, ∈ 𝐷-,., we define an edge 
𝑒(𝑏-, 𝑑-,.,X,V,,) connecting the fictious begin node to it. Similarly, for each arrival node at the last 
location 𝑙 𝑎-,.,X,V,, ∈ 𝐴-,., we define an edge 𝑒(𝑎-,.,X,V,, , 𝑓-) connecting it to the fictious end node. 
In each location 𝑙 ≠ 𝑙, between the pair of nodes 𝑎-,.,X,V,, and 𝑑-,.,XJ,VJ,,J it exists an edge if and only 
if all the following conditions are simultaneously true: 

• 𝛾 = 𝛾′; 
• 𝜏 = 𝜏′; 
• (𝑡J − 𝑡) ≥ 𝑠𝑡𝑜𝑝-,. and (𝑡J − 𝑡) ≤ 𝑠𝑡𝑜𝑝-,. , being 𝑠𝑡𝑜𝑝-,. and 𝑠𝑡𝑜𝑝-,. the lower and upper 

bounds for the stop time respectively. 
Between two departure and arrival nodes 𝑑-,.,X,V,, and 𝑎-,.J,XJ,VJ,,J , relevant to consecutive locations 
𝑙 and 𝑙′, 𝑙 preceding 𝑙′ in 𝐽- by means of the infrastructure edge ℯ in direction 𝑑𝑖𝑟	, it exists a TEG 
edge if and only if all the following conditions are met: 

• (𝑡J − 𝑡) ≥ 𝑟𝑡-,ℯ; 
• (𝑡J − 𝑡) ≥ 𝑟𝑡-,ℯ; 
• (𝑡J − 𝑡) ≥ 𝑚𝑟𝑡ℯ,'(",),V,VJ

"#&,-  
Where 𝑟𝑡-,ℯ and 𝑟𝑡-,ℯ are the minimum and maximum run times admitted for the group’s trains on 
the infrastructure edge ℯ, and  𝑚𝑟𝑡ℯ,'(",),V,VJ

"#&,-  is the minimum technical run time for the rolling stock 
𝑟𝑠-,. with the considered combination of station tracks and the EEE 𝜀 = 𝐸𝐸𝐸(𝛾, 𝛾′)1.  

𝑚𝑟𝑡ℯ,'(",),V,VJ
"#&,- = 𝑚𝑟𝑡ℯ,'(",)

"#&,- + ∆𝑟𝑡"#&,-
V + ∆𝑟𝑡"#&,-

VJ  Eq. 33 

Figure 3 provides a graphical example of the TEG relevant to a group travelling through 3 stations. 
The fictious begin and end nodes are highlighted, as well as the arrival and departure nodes in each 
location. While in stations 1 and 3 just one track can be used, in station 2 two tracks are available. 
In all the three stations on the 𝑆𝑇𝑂𝑃 station mode shall be used, and in station 2 the minimum stop 
time is greater than 0. 

 
1 𝐸𝐸𝐸(𝛾, 𝛾′) is the operator that, given two pass/stop station modes in consecutive locations 𝛾, 𝛾′, 
returns the consistent Edge Extremity Event 𝜀. E.g. 𝛾 = 𝑃𝐴𝑆𝑆, 𝛾J = 𝑆𝑇𝑂𝑃	 ⟹ 	𝜀 = 𝑃𝐴𝑆𝑆/𝑆𝑇𝑂𝑃 
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Figure 3. Graphical example of a Time Expanded Graph. 

3.6.2 Weights on the TEG 

Each edge 𝑒(𝑢, 𝑣) is characterised by the following set of weights 𝑤(?,@),/, one for each objective 
𝑜 ∈ 𝑂 − {𝑁𝑇𝑅}: 

• 𝑤(?,@),BBB  is the duration of the transition represented by that edge, multiplied by the 
number of trains 𝑛𝑡𝑟- belonging to group 𝑔. 

• 𝑤(?,@),GF is the energy consumed by the group’s trains performing that transition, multiplied 
by the number of trains 𝑛𝑡𝑟- belonging to group 𝑔. In case of station transitions (nodes 𝑢, 
𝑣 referring to the same location), 𝑤(?,@),GF is defined equal to 0; 

• 𝑤(?,@),FHI  is defined as the number of additional conflicts with already scheduled train 
groups that would arise in case of the group’s trains would perform that transition. 

• 𝑤(?,@),CB is defined as the minimum buffer time with already scheduled train groups in case 
of the group’s trains performing that transition. 

𝑤(?,@),BBB  and 𝑤(?,@),GF  are calculated a-priori during the TEG’s construction. They are a static 
attribute of the TEG’s edges. 𝑤(?,@),BBB is the difference between the times associated to nodes 𝑣 
and 𝑢, i.e. the run time (line transition) or the stop time (station transition) multiplied by the number 
of trains belonging to the group. Only in case of line transitions, 𝑤(?,@),GF is the energy consumed 
by the rolling stock used by the group when travelling from the pairs of locations associated to nodes 
𝑢 and 𝑣 with the above-mentioned run time, multiplied by the number of trains belonging to the 
group. 
 

𝑤(?,@),FHI = 𝑤(?,@),FHI2Φ-4 Eq. 34 

𝑤(?,@),CB = 𝑤(?,@),CB(Φ-) Eq. 35 

 
𝑤(?,@),FHI and 𝑤(?,@),CB are dynamically calculated each time a TEG is to be explored by an ant. They 
depend on the set Φ- of partial solutions 𝑆2-J found by the same ant for already scheduled train 
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groups 𝑔′. In particular, if 𝑒(𝑢, 𝑣) relies on a certain infrastructure resource 𝔯 (being 𝔯 a line stretch 
or a station track), a comparison is performed between 𝑒 and each 𝑒′ ∈ 𝑆2-J , 𝑆2-J ∈ Φ-, such that 
𝑒′ relies on 𝔯 too. This comparison calculates the number of conflicts and the minimum buffer time 
between the trains of 𝑔′ (travelling according to their already scheduled timetable) and the trains of 
𝑔 in case the latter would use transition 𝑒(𝑢, 𝑣) on 𝔯. 
It is worthwhile to highlight that, in principle, this information could be calculated a priori, 
comparing each possible couple of edges belonging to different TEGs but relying on the same 
resource. However, experiments revealed that the amount of memory needed to store this 
information exceeds acceptable levels with real-size instances. Hence the decision to calculate it 
dynamically, accepting higher computation times per iteration. 

3.6.3 TEG pruning 

The such constructed TEG undertakes a “pruning” process in which all the “leaf” nodes, different 
from the fictious end node 𝑓-, are removed. Leaf nodes are nodes with no outgoing edges. The 
pruning procedure is described in Pseudocode 3. After pruning, for each remaining node of the TEG, 
at least one path exists linking the fictious start and end nodes and containing the node in point.  
PROCEDURE pruneTheTEG(TEG) 
N = nodes in TEG different from bg and fg 
S = nodes in N with no outgoing edges 
while S is not empty: 
 remove from TEG the nodes in S with all their ingoing edges 
 N = N – S 
 S = nodes in N with no outgoing edges 

Pseudocode 3. TEG pruning procedure. 

A pruned TEG occupies less memory and is required for the implementation of the FAST 
exploration, since it ensure that the fictious end node is reachable from all the TEG’s node. 

3.6.4 FAST exploration 

The TEG can be explored in a so-called fast mode, formalized by Pseudocode 4. Starting from the 
begin node, a path is constructed, choosing the next node within the neighbours of the last chosen 
one, until the end node is reached.  
In fast mode, a simple mechanism is implemented to push the exploration towards conflict-free 
scheduling. At each step, the 𝑛𝑜𝐶𝑓𝑙𝐶𝑎𝑛𝑑𝑠 set is defined as that containing all the neighbours of the 
last-chosen node which can be reached via conflict-free transitions. If 𝑛𝑜𝐶𝑓𝑙𝐶𝑎𝑛𝑑𝑠 is empty, the 
candidates set 𝐶𝐴𝑁𝐷 is defined as the entire neighbourhood of the last-chosen node. Otherwise, 
𝐶𝐴𝑁𝐷 = 𝑛𝑜𝐶𝑓𝑙𝐶𝑎𝑛𝑑𝑠 . Then, the next node is chosen within the 𝐶𝐴𝑁𝐷  set. Notice that this 
mechanism does not ensure that, if one conflict-free path exists, it is returned by the exploration. 
 
PROCEDURE ant_scheduleGroupFast(S2, g) 
S2g = [fg] 
u = fg 
while u is not bg: 
 for each v such that u is in neighbours of v: 
  compute w(v,u),CFL and w(v,u),ST 
 noCflCands = {v : u in neighbours of v such that w(v,u),CFL=0} 
 if noCflCands is not empty: 

cand = noCflCands 
 else: 
  cand = {v : u in neighbours of v} 
 u = randomly choose an item from candidates 
 push u into S2g 
return S2g 

Pseudocode 4. Exploration of a TEG in FAST mode. 

Each node 𝑣 ∈ 𝐶𝐴𝑁𝐷 in the candidates set is randomly chosen with probability  
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𝑝@ =
𝜏(?,@)M ∙ 𝜂(?,@)

N

∑ �𝜏(?,@J)M ∙ 𝜂(?,@J)
N�@J∈F<3O

 

 
Eq. 36 

Where 𝜏(?,@) is the pheromone present on the edge connecting 𝑢 to 𝑣, and 𝜂(?,@) is the aggregated 
normalised heuristic factor  

𝜂(?,@) = 𝜂(?,@)2Φ-4 = 
= 𝜆BBB ∙ 𝑤(?,@),BBB + 𝜆GF ∙ 𝑤(?,@),GF + 𝜆FHI ∙ 𝑤(?,@),FHI2Φ-4 + 𝜆CB ∙ 𝑤(?,@),CB2Φ-4 

 
Eq. 37 

Where: 
• 𝑤(?,@),BBB = 𝑛𝑜𝑟𝑚2𝑤(?,@),BBB , 𝑏𝑒𝑠𝑡BBB , 𝑤𝑜𝑟𝑠𝑡BBB4 , being 𝑏𝑒𝑠𝑡BBB =

min	(𝑤(?,@J),BBB , 𝑣J ∈ 𝐶𝐴𝑁𝐷), 𝑤𝑜𝑟𝑠𝑡BBB = max	(𝑤(?,@J),BBB , 𝑣J ∈ 𝐶𝐴𝑁𝐷); 
• 𝑤(?,@),GF = 𝑛𝑜𝑟𝑚2𝑤(?,@),GF , 𝑏𝑒𝑠𝑡GF , 𝑤𝑜𝑟𝑠𝑡GF4 , being 𝑏𝑒𝑠𝑡GF = min	(𝑤(?,@J),GF , 𝑣J ∈

𝐶𝐴𝑁𝐷), 𝑤𝑜𝑟𝑠𝑡GF = max	(𝑤(?,@J),GF , 𝑣J ∈ 𝐶𝐴𝑁𝐷); 
• 𝑤(?,@),FHI(𝑆2) = 𝑛𝑜𝑟𝑚2𝑤(?,@),FHI(𝑆2), 	𝑏𝑒𝑠𝑡FHI , 𝑤𝑜𝑟𝑠𝑡FHI4 , being 𝑏𝑒𝑠𝑡FHI =

min	(𝑤(?,@J),FHI(𝑆2), 𝑣J ∈ 𝐶𝐴𝑁𝐷), 𝑤𝑜𝑟𝑠𝑡FHI = max	(𝑤(?,@J),FHI(𝑆2), 𝑣J ∈ 𝐶𝐴𝑁𝐷); 
• 𝑤(?,@),CB(𝑆2) = 𝑛𝑜𝑟𝑚2𝑤(?,@),CB(𝑆2), 	𝑏𝑒𝑠𝑡CB , 𝑤𝑜𝑟𝑠𝑡CB4 , being 𝑏𝑒𝑠𝑡CB =

max	(𝑤(?,@J),CB(𝑆2), 𝑣J ∈ 𝐶𝐴𝑁𝐷), 𝑤𝑜𝑟𝑠𝑡CB = min	(𝑤(?,@J),CB(𝑆2), 𝑣J ∈ 𝐶𝐴𝑁𝐷). 

3.6.5 SMART exploration 

Pseudocode 5 formalizes the so-called smart exploration mode of the Layer 2 TEG. This mode 
exploits a more complete heuristic information, which allows to restrict the exploration to those 
paths which minimise (and possibly avoid) the occurrence of conflicts. With this approach, the 
TEG’s nodes are firstly labelled by means of a modified Dijkstra algorithm, and then a path is 
computed making use of these labels. Pseudocode 5 contains the overall framework of this approach. 
 
PROCEDURE ant_scheduleGroupSmart(S2, g) 
labelledTEG = labelNodes(S2, g) 
S2g = getTheRandomPath(labelledTEG) 
return S2g 

Pseudocode 5. Exploration of a TEG in SMART mode. 

The idea beneath the labelling procedure is to firstly activate just those TEG edges (and nodes) 
which belongs to paths featuring the minimum possible number of conflicts with already scheduled 
train groups. This information is provided by the label conflict distance, which is the minimum cost 
of a path linking each node to the begin one, computed utilising as edge costs the conflict weights 
𝑤(?,@),FHI . As already explained, the latter is the number of additional conflicts with already 
scheduled groups that the utilisation of a certain edge implies. Secondly, each of these nodes is 
labelled with its normalised aggregated distance from the begin node. This distance is the minimum 
cost of a path linking each node to the begin node, computed utilising as edge costs the normalised 
aggregated heuristic factors 𝜂(?,@) calculated as in Section 3.6.4. 
Pseudocode 6 formalizes the labelling procedure. Each node is initialized setting to positive infinity 
the labels conflict distance (cflDist) and aggregated normalised distance (aggNormDist). The 
label previous is introduced too, as it will be used by the Local Search (see Section 3.7). Then the 
label conflict distance is computed for each node of the TEG (Part 1). The conflict distance of the 
end node 𝑓- is therefore the minimum possible number of additional conflicts that the scheduling of 
the current group would cause with regard to the already scheduled train groups. If it is equal to 0, 
there exists at least one path in the TEG that does not introduce any additional conflict. Smart 
exploration mode therefore restricts any further search to those minimum-conflicts paths only. 
To this purpose, we define the set active nodes containing all the nodes featuring a conflict distance 
minor or equal to the conflict distance of the end node. Then, the set active edges contains the TEG’s 
edges 𝑒(𝑢, 𝑣) such that 𝑢 and 𝑣 are both contained in active nodes and that the conflict distance of 
𝑣 is greater or equal than the conflict distance of 𝑢. 
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In Part 2 each node of the subgraph composed by active nodes and active edges is labelled with its 
aggregated normalised distance. This will actually be used as the heuristic information during the 
random construction of the path linking 𝑏- to 𝑓-. 
 
PROCEDURE labelNodes(S2, g) 
# INITIALIZATION 
for each u in Ng - {bg} 
 cflDist(u) = INF 
 aggNormDist(u) = INF 
 previous(u) = None 
 
# PART1: activation of the minimum conflict paths edges  
nodesToLabel = Ng 
cflDist(bg) = 0 
while nodesToLabel is not empty: 
 u = remove from nodesToLabel the node with minimum cflDist(u) 
 for v in neighbours(u): 
  alt = cflDist(u) + w(u,v),CFL 
  if alt < cflDist(v): 
   cflDist(v) = alt 
 
activeNodes = {u in Ng : cflDist(u) <= cflDist(fg)}  
activeEdges = {e(u, v) in Eg : u,v in activeNodes and cflDist(u) <= cflDist(v)} 
 
# PART2: labelling with the aggregated normalised distance 
nodesToLabel = activeNodes 
aggNormDist(bg) = 0 
while nodesToLabel is not empty: 
 u = remove from nodesToLabel the node with minimum aggNormDist(u) 
 for v in neighbours(u) ∩ activeEdges 
  alt = aggNormDist(u) + 𝜂(;,A)   

if alt < aggNormDist(v): 
   aggNormDist(v) = alt 
   previous(v) = u 
return the labelled TEG 

Pseudocode 6. Labelling of the TEGs nodes in SMART mode. 

 
PROCEDURE getTheRandomPath(labelledTEG) 
S2g = [fg] 
u = fg 
while u is not bg: 

u = randomly choose an item from {v : u in neighbours(v) : e(v,u) in 
activeEdges} 
push u into S2g 

return S2g 

 Pseudocode 7. Computation of the 𝑆22 partial solution in SMART mode. 

In Pseudocode 7 the choice of the next candidate is restricted to those neighbours of last-chosen 
node 𝑢 which are linked to 𝑢 by and edge in the active edges set. Each of these nodes 𝑣 has a 
probability to be chosen equal to  

𝑝@ =
𝜏(?,@)M ∙ 𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣)N

∑ 2𝜏(?,@J)M ∙ 𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣′)N4@J∈F<3O
 Eq. 38 

Where 𝜏(?,@) is the pheromone on the edge (𝑢, 𝑣), and 𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣) is defined as 
 

𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣) =
𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣)	
𝐺𝐷2𝑏-, 𝑣4 − 1

 Eq. 39 

given that the geodesic distance 𝐺𝐷(𝑢, 𝑢′) between two nodes of a graph is the minimum number 
of edges in a shortest path connecting them. We use 𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣)  instead of 
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𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣) in order to improve the comparability of the values of pheromonal and heuristic 
information. The aggregated normalised distance of a node 𝑣  is the sum of the aggregated 
normalised costs of the edges of the shortest path 𝑆𝑃(𝑏-, 𝑣) (shortest according to the aggregated 
normalised costs) linking 𝑏- to 𝑣	 . 

𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣) = w 𝜂(?,@)
1(?,@)∈C\(]&,@)

 
Eq. 40 

The aggregated normalised cost of each edge 𝑒(𝑢, 𝑣) , 𝑢 ≠ 𝑏-  is always 𝜏:;3 ≤ 𝜂(?,@) ≤ 𝜏:<= 
(according to the defined normalisation and aggregation operators), while all the edges departing 
from 𝑏- have aggregated normalised cost equal to 0. The shortest path contains one and only one 
edge departing from 𝑏-, therefore the following inequalities are always valid 

2𝐺𝐷2𝑏-, 𝑣4 − 14 ∙ 𝜏:;3 ≤ w 𝜂(?,@)
1(?,@)∈C\(]&,@)

≤	2𝐺𝐷2𝑏-, 𝑣4 − 14 ∙ 𝜏:<= 
Eq. 41 

and  
 

𝜏:;3 ≤ 𝑎𝑔𝑔𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(𝑣) =
∑ 𝜂(?,@)1(?,@)∈C\(]&,@)

𝐺𝐷2𝑏-, 𝑣4 − 1
≤ 𝜏:<= Eq. 42 

 

3.6.6 Blending of SMART and FAST Layer 2 exploration modes 

The two exploration modes both produce the scheduling of the given train group. Their performance 
(w.r.t. the optimisation of the objective functions) as well as they computation time are likely to be 
rather different, as it results from the tuning presented in Section 5.2.1. We blend their usage, 
according to the current iteration index 𝑖𝑡𝑒𝑟 ∈ [1,𝑚𝑎𝑥𝐼𝑡𝑒𝑟] and to the two parameters smart and 
fast mode utilisation periods, 𝑛C:<KB and 𝑛H<CB respectively: 

• If the modulus of 𝑖𝑡𝑒𝑟 − 1 and the sum of 𝑛C:<KB  and 𝑛H<CB  is minor than 𝑛C:<KB , the 
smart mode is used; 

• Otherwise, the fast mode is used. 
This permits to use the smart mode for 𝑛C:<KB  consecutive iterations and the fast mode for the 
following, 𝑛H<CB ones. To set to 0 these parameters permits to exclude one mode. If both are set to 
0, the smart mode is used by default. Pseudocode 8 formalizes this approach. 
PROCEDURE ant_scheduleGroup(S2, g) 
m = mod((iter -1 ),  nSMART + nFAST) 
if m <nSMART: 
 S2g = ant_scheduleGroupSmart(S2, g) 
else: 
 S2g = ant_scheduleGroupFast(S2, g) 
return S2g 

Pseudocode 8. Blending strategy of the smart and fast Layer 2 exploration modes. 

3.7 Local search 

In this section we introduce a Local Search technique to further improve a solution obtained by ants 
through the randomized exploration of Layer 1 and Layer 2 graphs. 
Let 𝑆 = {𝑆1, 𝑆2}, 𝑆2 = j𝑆2- ∶ 𝑔 ∈ 𝐺	⋀ 𝑐I*

- ∈ 𝑆1 ∩ 𝐶I*m be the solution we want to improve with 
Local Search. Solution components in 𝑆1 provide the order in which groups are scheduled, as well 
as which groups are scheduled and which groups are discarded. For the scheduled groups, 
components in 𝑆2  provide the actual scheduling (timetable), resulting from both the heuristic 
information (strongly affected by the conflicts with already-scheduled train groups) and the 
pheromone trail. In principle, we can look at the pheromone trail as a “memorized experience” which 
would lead the current group towards a scheduling which would help the scheduling process of the 
following ones. 
The idea beneath the proposed Local Search is to firstly define a subset 𝐿 ⊆ 𝑆1 ∩ 𝐶I*. For each 
component in 𝐿 we reschedule the relevant group, considering during the TEG exploration not only 
the groups scheduled before it, but all the scheduled groups in 𝑆1, with their scheduled timetable. 
On the one hand, this would allow for a reduction of the number of residual conflicts, which is 
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actually the main target of the local search. On the other hand, such a reduction would likely affect 
the other objectives.  
Pseudocode 9 formalizes this process. Each component of 𝐿 is considered, following the ordering 
given by 𝑆1. The sub-solution 𝑆2-  of that group is removed from the list of the Layer 2 sub-
solutions. Then, the labelling procedure of the group 𝑔 TEG is invoked. Finally, an improved partial 
solution 𝑆2′- is computed and added to the new set 𝑆2′ of Layer 2 partial solutions. A new improved 
solution 𝑆′ = {𝑆1, 𝑆2′} is returned at the end of the procedure. 
PROCEDURE localSearch(S{S1, S2}) 
define L 
S2’ = S2 
for each cgL1 in L: 
 remove S2g from S2’ 
 labelledTEG = labelNodes(S2’, g) 
 S2g’ = getTheShortestPath(labelledTEG) 
 add S2g’ to S2’ 
return S’ = {S1, S2’} 

Pseudocode 9. Local Search procedure. 

The improved partial solution 𝑆2′- for group 𝑔 is obtained, as in Pseudocode 10, making use of the 
labels previous computed during the nodes labelling procedure (see Pseudocode 6 in Section 3.6.5). 
To this purpose, it acts as a Dijkstra algorithm since it returns the path between the end and begin 
nodes with the minimum aggregated normalised costs, searched between those paths featuring the 
minimum conflict cost. 
PROCEDURE getTheShortestPath(labelledTEG) 
S2’g = [fg] 
u = fg 
while u is not bg: 
 u = previous(u) 

push u into S2’g 
return S2’g 

Pseudocode 10. Computation of the 𝑆2′2 improved partial solution during Local Search. 

We govern the utilisation of this Local Search by means of three parameters 𝑝𝑐𝑆𝑜𝑙IC, 𝑛IC and 𝑛R/IC. 
On one side, 𝑝𝑐𝑆𝑜𝑙IC indicates, as a percentage of the cardinality of 𝑆1 ∩ 𝐶I*, how many solutions 
of 𝑆1 ∩ 𝐶I* will be refined by the Local Search. 𝐿 is then populated by the first ¤|𝑆1 ∩ 𝐶I*| ∙

^DC/.*.
*__

¦ 
solutions of 𝑆1 ∩ 𝐶I* . On the other side, we impose the utilisation of the Local Search for 𝑛IC 
consecutive iterations, followed by 𝑛R/IC iterations in which Local Search is not applied. 

3.8 Pheromone update 

At the end of each iteration, the Pareto Optimal Set is firstly updated with the newly obtained 
solutions. Previously obtained solutions of lower quality, i.e. those dominated by recently obtained 
ones, are discarded. Finally, POS solutions update colonies’ pheromone trails according to an 
update-by-region strategy. This strategy imposes that the POS is firstly split into regions, one for 
each colony. 𝑁?^'  (with 𝑁?^' ≥ 1) solutions of each region will then update the corresponding 
colony. 
To this purpose, the POS is split into equal-cardinality subsets 𝑅/  (regions), in such a way that 
solutions in each subset are the best according to objective 𝑜. Each subset updates the pheromone 
of the colony for which 𝑜 is the main objective. The split procedure is described in Pseudocode 11. 
PROCEDURE splitIntoRegion(POS) 
For o in O: 
 Ro = empty set 
S = POS 
While S is not empty: 
 W = empty set 
 For o in O: 
  s = best solution in S w.r.t. objective o 
  add s to W 
  add s to Ro 
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 remove from S all elements of W 

Pseudocode 11. Split of the POS into region. 

We introduce the following approach in order to promote the selection of updating solutions which 
minimise the number of residual conflicts. 
In each region 𝑅/, solutions are lexicographically sorted in worsening order2 according to the two 
objectives 𝐶𝐹𝐿 and 𝑜. The first 𝑁?^' elements of 𝑅/ are then selected for pheromone update. Let 
𝑆(/ be the i-th solution of 𝑅/ after sorting, and 𝛿(𝑆(/) the pheromone increment for all the edges, 
both in Layer 1 and Layer 2 graphs, utilised by solution 𝑆(/. 𝛿(𝑆(/) is computed as follows  

𝛿(𝑆(/) =
1

1 + �𝐶𝐹𝐿(𝑆(/) − 𝐶𝐹𝐿(𝑆*/)�
∙ 𝑚𝑎𝑥 �1,

1

1 + 𝑘/ �𝑜(𝑆(/) − 𝑜(𝑆*/)�
� Eq. 43 

𝑘/ is equal to +1 in case the optimisation direction of 𝑜 is minimisation, otherwise it is equal to −1. 
In Eq. 34 a lexicographic prioritization between the objectives 𝐶𝐹𝐿 and 𝑜 can be recognized. 𝛿(𝑆*/) 
is always equal to 1, while 0 < 𝛿(𝑆(/) < 1 for each 1 < 𝑖 ≤ 𝑁?^'. The max operator in the second 
factor is necessary to keep the result minor or equal than 1, since the difference 2𝑜(𝑆(/) − 𝑜(𝑆*/)4 
could become negative. 

4 A MILP formulation for the TTP 

4.1 Data model for the MILP formulation 

In this section the MILP formulation used to refine solutions provided by the MOACO algorithm is 
introduced. We exploit the same data model and notation previously presented in Sections 2.1 and 
2.2. Two main differences exist with the approach implemented for the MOACO.  
On the one hand, conflict constraints are implemented as hard ones. Resulting timetables are 
therefore conflict-free. On the other hand, the model considers each course of the group as a single 
one, with its own set of variable and constraints, which are no more defined at the level of a whole 
train group. Courses belonging to the same group are linked by a dedicated set of constraints, called 
train-linking, which allow to properly handle periodicity tolerances. 
To this purpose, we define a set of trains 𝑇, and for each train 𝑡 ∈ 𝑇 let 𝑔 being the train group to 
which 𝑡 belongs, being 𝑖, the index of 𝑡 within 𝑔 (having period 𝑝-), being equal to 0 for the first 
train of the group. We define a journey  𝐽, =  𝐽-, and a priority factor 𝑝𝑟, = 𝑝𝑟-.  
For each location (node) 𝑙 visited along the journey 𝐽,, we define: 

• The minimum and maximum arrival times at 𝑙 , 𝑎𝑟𝑟,,. = 𝑎𝑟𝑟-,. + 𝑖, ∙ 𝑝-  and 𝑎𝑟𝑟,,. =
𝑎𝑟𝑟-,. + 𝑖, ∙ 𝑝-  respectively. They are defined, only if 𝑙 ≠ 𝑙.  

• The minimum and maximum departure times from 𝑙 , 𝑑𝑒𝑝,,. = 𝑑𝑒𝑝-,. + 𝑖, ∙ 𝑝-  and 
𝑑𝑒𝑝,,. = 𝑑𝑒𝑝-,. + 𝑖, ∙ 𝑝- respectively. They are defined, only if 𝑙 ≠ 𝑙. 

• The rolling stock used by the train on the edge leaving 𝑙, only if 𝑙 ≠ 𝑙; 
• The set Τ,,. = Τ-,. of usable station tracks; 
• The set Γ,,. = Γ-,. of usable pass/stop modes; 
• The minimum and maximum stop times 𝑠𝑡𝑜𝑝,,. = 𝑠𝑡𝑜𝑝-,. and 𝑠𝑡𝑜𝑝,,. = 𝑠𝑡𝑜𝑝-,.. 
• The minimum and maximum run times admitted for the train in the edge ℯ leaving 𝑙 (only 

if 𝑙 ≠ 𝑙), 𝑟𝑡,,ℯ = 𝑟𝑡-,ℯ  and 𝑟𝑡,,ℯ = 𝑟𝑡-,ℯ; 
• The linked train at a location 𝑙 𝑙𝑡,,..  This is the train w.r.t.  which we need to impose a 

periodicity at 𝑙:  it is the one following 𝑡 in its group (𝑖.,(,- = 𝑖, +1).  If no linked train exists,	
𝑙𝑡,,. = 𝑡. 

• The minimum and maximum time separation w.r.t. the arrival and departure times of ltt,l at 
a location 𝑡𝑠𝑎,,.,𝑡,𝑙,𝑙, 𝑡𝑠𝑎,,.,𝑡,𝑙,𝑙, 𝑡𝑠𝑑,,.,𝑡,𝑙,𝑙, 𝑡𝑠𝑑,,.,𝑡,𝑙,𝑙. With these values we manage periodicity 
and periodicity tolerance as follows: 

o 𝑡𝑠𝑎,,.,𝑡,𝑙,𝑙 = 𝑝- − 𝑡𝑜𝑙-,.; 
 

2 I.e. an order such that each element of the sorted set features a worse-or-equal value of the objective 
in point than the previous elements. If the optmization direction of this objective is minimisation, an 
ascending ordering is produced. 
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o 𝑡𝑠𝑎,,.,𝑡,𝑙,𝑙 = 𝑝- + 𝑡𝑜𝑙-,.; 
o 𝑡𝑠𝑑,,.,𝑡,𝑙,𝑙 = 𝑝- − 𝑡𝑜𝑙-,.; 
o 𝑡𝑠𝑑,,.,𝑡,𝑙,𝑙 = 𝑝- + 𝑡𝑜𝑙-,.; 

From the data, we can derive a set 𝑆1 for each edge 𝑒	 ∈ 	𝐸 including the pairs or trains which may 
claim e in overlapping time intervals. A pair of trains (𝑡, 𝑡′) 	∈ 	𝑇+  will belong to 𝑆1  with 𝑒	 =
	(𝑢, 𝑣, 𝑗) if the index of 𝑡 in 𝑇 precedes the one of 𝑡′, 𝑒 ∈ 𝐽, ∩ 𝐽,J and 

• 𝑑𝑖𝑟,,1 =  𝑑𝑖𝑟,J,1  and 𝑑𝑒𝑝,,? ≤ 𝑑𝑒𝑝,J,?  and 𝑑𝑒𝑝,,? ≥ 𝑑𝑒𝑝,J,? , or 𝑎𝑟𝑟,,@ ≤ 𝑎𝑟𝑟,J,@  and 
𝑎𝑟𝑟,,@ ≥ 𝑎𝑟𝑟,J,@ , or 

• 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,J,1, with 𝑡 traversing 𝑢 before 𝑣, and 𝑑𝑒𝑝,,? ≤ 𝑎𝑟𝑟,J,? and 𝑑𝑒𝑝,,? ≥ 𝑎𝑟𝑟,J,?, or 
𝑎𝑟𝑟,,@ ≤ 𝑑𝑒𝑝,J,@ and 𝑎𝑟𝑟,,@ ≥ 𝑑𝑒𝑝,J,@ 

Similarly, we derive set 𝑆𝜏	with the pairs of trains that can claim the same track τ	concurrently. A 
pair of trains (𝑡, 𝑡’) 	 ∈ 	𝑇+ will belong to 𝑆𝜏 with 𝜏	 ∈ 	Τ@ if the index of 𝑡 in 𝑇 precedes the one of 
𝑡’, 𝑣 ∈ 𝐽, ∩ 𝐽,J , τ ∈ Τ,,. ∩ Τ,J,. and 𝑎𝑟𝑟,,@ ≤ 𝑑𝑒𝑝,J,@ and 𝑑𝑒𝑝,,@ ≥ 𝑎𝑟𝑟,J,@. Finally, we define the sets 
𝑆©1  and 𝑆©V  as 𝑆𝑒 and 𝑆𝜏 but including the pairs of trains for which an order is implicitly defined 
through 𝑎𝑟𝑟,,@, 𝑎𝑟𝑟,,@, 𝑑𝑒𝑝,,@ and 𝑑𝑒𝑝,,@. If a pair of trains (𝑡, 𝑡’) is in one of these sets, it means 𝑡 
precedes 𝑡’ there. 

4.2 The MILP formulation  

To model the timetabling problem, we define the following sets of non-negative continuous 
variables: 

• Arrival time of train 𝑡 ∈ 𝑇 at node 𝑣 ∈ 𝐽,\l,: 𝑎𝑟𝑟,,@ ∈ [𝑎𝑟𝑟,,@, 𝑎𝑟𝑟,,@]; 
• Departure time of train at node 𝑣 ∈ 𝐽,\l,: 𝑑𝑒𝑝,,@ ∈ [𝑑𝑒𝑝,,@, 𝑑𝑒𝑝,,@]; 
• Running time of train 𝑡 ∈ 𝑇 on an edge 𝑒 ∈ 𝐽,: 𝑟𝑡,,1 ∈ 𝑟𝑡,,1 , 𝑟𝑡,,1®; 
• Energy consumption of train 𝑡 ∈ 𝑇 on an edge 𝑒 ∈ 𝐽,: 𝑒𝑐,,1; 

Moreover, we define the following sets of binary variables:  
• For each train 𝑡 ∈ 𝑇 , location 𝑣 ∈ 𝐽,  and track τ ∈ Τ,,. : 𝑧,,V  equal to 1 if 𝑡  uses 𝜏 , 0 

otherwise; 
• For each train 𝑡 ∈ 𝑇 and 𝜀 ∈ 𝐸𝐸𝐸,,1, with edge 𝑒 ∈ 𝐽,: 𝑦,,) equal to 1 if 𝑡 runs according to 

𝜀, 0 otherwise; 
• For each edge 𝑒 ∈ E  and pair of trains (𝑡, 𝑡’) ∈ 	 𝑆1 : 𝑝,,,/,1  equal to 1 if 𝑡 ≺ 𝑡′  on 𝑒 , 0 

otherwise; 
• For each track 𝜏 ∈ ⋃ Τ@@∈`  and pair of trains (𝑡, 𝑡’) ∈ 	 𝑆V: 𝑠,,,/,V equal to 1 if 𝑡 ≺ 𝑡′ on 𝜏, 0 

otherwise. 
For p and s variables, the precedence symbol ≺	indicates two slightly different relations. When it 
refers to edges, in p variables, the relation concerns edge entrance times. Indeed, if two trains travel 
in opposite directions, then their entrance in the edge occurs at the opposite extremes. Instead, if two 
trains travel in the same direction, the relation considers the moment at which they leave the same 
node. The precedence relation on edges only imposes the impossibility of having two trains 
simultaneously present if they travel in the opposite directions. Differently, when the precedence 
concerns tracks in nodes, in s variables, the precedence relation concerns the whole duration of the 
presence of two trains, as a simultaneous occupation of a track is forbidden.  
Finally, to measure robustness, we define two non-negative continuous variables: 

• Minimum buffer time on edges 𝑚𝑏𝑒; 
• Minimum buffer time on tracks 𝑚𝑏𝜏. 

In addition to the input data described above, we will use 𝑚 and 𝑀 to indicate vary little and very 
large constant, respectively. 
Multi-objective optimisation is handled by the MILP formulation by aggregating a set of costs into 
a single objective function to be minimise. With respect to the MILP formulation, we only deal with 
three objectives, namely TTT, EC and ST, since conflicts are treated as hard constraints and the 
number of scheduled trains is an input. To this purpose we define the cost of a time unit of travel 
time 𝑤𝑇𝑇  and one energy consumption unit 𝑤𝐸𝐶 . Minimum buffer times will appear in the 
objective function weighted through factor 𝑤𝑆𝑇. 
The objective function is the following: 
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minw ³𝑤𝑇𝑇 ∙ �𝑎𝑟𝑟,,a( − 𝑑𝑒𝑝,,a(� +w 𝑤𝐸𝐶 ∙ 𝑒𝑐,,1
1∈W(

´ − 𝑤𝑆𝑇 ∙ (𝑚𝑏𝑒 +𝑚𝑏𝜏)
,∈B

 Eq. 44 

 
On the one hand, the objective considers, for each train, the weighted travel time and energy 
consumption.  On the other hand, it accounts for weighted minimum buffer time on edges and tracks. 
Remark that while the trin components are to be minimised, the buffer time ones are to be 
maximised. 
This objective must be optimised while respecting several sets of constraints: 
Each train must run according to exactly one Edge Extremity Event for each edge: 

w 𝑦,,) = 1		∀𝑡 ∈ 𝑇, 𝑒 ∈ 𝐽,
)∈GGG(,$

 
Eq. 45 

Each train must use exactly one of its available tracks in each node: 
w 𝑧,,V = 1
V∈Z(,0

			∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽, Eq. 46 

Each train cannot stay in a node less than the minimum or more than the maximum stop time: 

𝑑𝑒𝑝,,@ − 𝑎𝑟𝑟,,@ ≥ 𝑠𝑡𝑜𝑝,,@		∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙, , 𝑙,m, 𝑠𝑡𝑜𝑝,,@ > 0 Eq. 47 

𝑑𝑒𝑝,,@ − 𝑎𝑟𝑟,,@ ≤ 𝑠𝑡𝑜𝑝,,@		∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙, , 𝑙,m, 𝑠𝑡𝑜𝑝,,@ > 0 
Eq. 48 

Arrival and departure time of a train at a node are separated by little constant 𝑚 if the train does not 
stop. This always holds for nodes where stops are forbidden (𝑠𝑡𝑜𝑝,,@ = 𝑠𝑡𝑜𝑝,,@ = 0). If the stop is 
optional (𝑠𝑡𝑜𝑝,,@ = 0, 𝑠𝑡𝑜𝑝,,@ > 0) this must hold if the chosen EEE imposes a stop: the will link 
the EEE with the first node of the edge: 

𝑎𝑟𝑟,,@ = 𝑑𝑒𝑝,,@ −𝑚		∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙, , 𝑙,m, 𝑠𝑡𝑜𝑝,,@ = 𝑠𝑡𝑜𝑝,,@ = 0 Eq. 49 

𝑎𝑟𝑟,,@ ≤ 𝑑𝑒𝑝,,@ −𝑚		∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙, , 𝑙,m, 𝑠𝑡𝑜𝑝,,@ = 0, 𝑠𝑡𝑜𝑝,,@ > 0 
Eq. 50 

𝑑𝑒𝑝,,@ − 𝑎𝑟𝑟,,@ −𝑚 ≤ �𝑠𝑡𝑜𝑝,,@ −𝑚� w 𝑦,,)
)∈GGG(,$∩{(#,#),(#,^)}

		∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙, , 𝑙,m, 𝑒

∈ 𝐽, , 𝑒 = 𝑣, 𝑠𝑡𝑜𝑝,,@ = 0, 𝑠𝑡𝑜𝑝,,@ > 0 

Eq. 51 

By using constant 𝑚, we impose that the presence of the train is recorded for a strictly positive time 
in all situations. This has no actual impact for practical purposes (we can set 𝑚 to half a second for 
example) but allows ensuring the disjunction of track utilisation by different trains. 
If an optional stop can be performed at a node, then the EEE chosen for reaching and leaving the 
node must be coherent: 

w w 𝑦,,)
)∈GGG(,$∩{(#,#),(#,^)}1∈W(:1c@

= w w 𝑦,,)
)∈GGG(,$/∩{(#,#),(#,^)}1J∈W(:1Jc@

		∀𝑡 ∈ 𝑇, 𝑣

∈ 𝐽,\j𝑙, , 𝑙,m, 𝑠𝑡𝑜𝑝,,@ = 0, 𝑠𝑡𝑜𝑝,,@ > 0 
Eq. 52 

At each node, the separation between the arrival and the departure times of each train 𝑡 and its linked 
one 𝑙𝑡,,@ at a node are in the acceptable intervals: 

𝑎𝑟𝑟.,(,0,@ − 𝑎𝑟𝑟,,@ ≥ 𝑡𝑠𝑎,,.,𝑡,𝑣	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙,m ∶ 	 𝑙𝑡,,@ ≠ 𝑡 Eq. 53 

𝑎𝑟𝑟.,(,0,@ − 𝑎𝑟𝑟,,@ ≤ 𝑡𝑠𝑎,,.,𝑡,𝑣	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙,m ∶ 	 𝑙𝑡,,@ ≠ 𝑡 
Eq. 54 

𝑑𝑒𝑝.,(,0,@ − 𝑑𝑒𝑝,,@ ≥ 𝑡𝑠𝑑,,.,𝑡,𝑣	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙,m ∶ 	 𝑙𝑡,,@ ≠ 𝑡 
Eq. 55 

𝑑𝑒𝑝.,(,0,@ − 𝑑𝑒𝑝,,@ ≤ 𝑡𝑠𝑑,,.,𝑡,𝑣	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐽,\j𝑙,m ∶ 	 𝑙𝑡,,@ ≠ 𝑡 
Eq. 56 

Remark that we only impose this constraint for a train 𝑡 if 𝑙𝑡,,@ ≠ 𝑡, i.e. if there is a train following 
𝑡 in the group. 
For each train, the running time for an edge must be comply with the minimum technical one, also 
considering the track used at each extreme node: 
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𝑟𝑡,,1 ≥ w �𝑚𝑟𝑡ℯ,'("(,$,)
"#( ∙ 𝑦,,) + w ∆𝑟𝑡"#(

V 2𝑧,,V + 𝑦,,) − 14
V∈Z(,$)∈GGG(,$

+ w ∆𝑟𝑡"#(
V 2𝑧,,V + 𝑦,,) − 14

V∈Z(,$

�	∀𝑡 ∈ 𝑇, 𝑒 ∈ 𝐽, 

Eq. 57 

Here, we do the sum over all EEEs that can be used on the edge, knowing than at most one of them 
will be used. If an EEE 𝜀 is not used, variable 𝑦,,)  is set to 0 and all the elements of the sum 
disappear. In particular, additional run time is considered only if both the EEE and the track are 
used: in this case 𝑧,,V + 𝑦,,) − 1 = 1, otherwise it equals 0. 
For each train, the energy consumption on an edge must be coherent with the EEE is runs according 
to, plus the additional consumption due to the difference between the chosen and the minimum 
running time: 

𝑒𝑐,,1 ≥ 𝑚𝑒𝑐ℯ,'("(,$,)
"#( − 𝑘𝑒𝑐ℯ,'("(,$

"#( ∙ �𝑟𝑡,,1 −𝑚𝑟𝑡ℯ,'("(,$,)
"#( � −𝑀21 − 𝑦,,)4	∀𝑡 ∈ 𝑇, 𝑒

∈ 𝐽, , 𝜀 ∈ 𝐸𝐸𝐸,,1 
Eq. 58 

If two trains 𝑡, 𝑡J may claim the same edge 𝑒 concurrently traveling in the same direction, their 
departure times from the first node of the edge must be separated at least of the minimum headway 
time increased of a factor proportional to the increase of running time of the first train passing with 
respect to the minimum: 
 

ℎ,,,J = 𝑚ℎℯ,'("(,$,)(,)(/
"#(,"#(/ + 𝑘ℎℯ,'("(,$

"#( ∙ �𝑟𝑡,,1 −𝑚𝑟𝑡ℯ,'("(,$,)
"#( � Eq. 59 

𝑑𝑒𝑝,/,? − 𝑑𝑒𝑝,,? ≥ ℎ,,,/ −𝑀23 − 𝑝,,,/,1 − 𝑦,,) − 𝑦,/,)/4	∀𝑒 ∈ 𝐸, (𝑡, 𝑡J) ∈ 𝑆1 , 𝑢 ∈ 𝐽, , 𝑒
= 𝑢	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝜀 ∈ 𝐸𝐸𝐸,,1 , 𝜀J ∈ 𝐸𝐸𝐸,/,1 , 𝑑𝑖𝑟,,1 = 𝑑𝑖𝑟,J,1 Eq. 60 

ℎ,J,, = 𝑚ℎℯ,'("(/,$,)(/,)(
"#(/,"#( + 𝑘ℎℯ,'("(/,$

"#(/ ∙ �𝑟𝑡,J,1 −𝑚𝑟𝑡ℯ,'("(/,$,)
"#(/ � 

Eq. 61 

𝑑𝑒𝑝,,? − 𝑑𝑒𝑝,J,? ≥ ℎ,J,, −𝑀22 + 𝑝,,,/,1 − 𝑦,,) − 𝑦,/,)/4	∀𝑒 ∈ 𝐸, (𝑡, 𝑡J) ∈ 𝑆1 , 𝑢 ∈ 𝐽, , 𝑒
= 𝑢	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝜀 ∈ 𝐸𝐸𝐸,,1 , 𝜀J ∈ 𝐸𝐸𝐸,/,1 , 𝑑𝑖𝑟,,1 = 𝑑𝑖𝑟,J,1 Eq. 62 

In the first equation, if 𝑡 ≺ 𝑡′ (𝑝,,,/,1 = 1) and both trains use the edge them the constraint imposes 
the respect of the suitable minimum headway time, otherwise it is trivially satisfied. In parallel, the 
second constraint imposes the headway if 𝑡′ ≺ 𝑡 (𝑝,,,/,1 = 0). 
If two trains	𝑡, 𝑡J  may claim the same edge 𝑒  concurrently traveling in opposite directions, the 
departure time of the second train from the first node of 𝑒 it crosses must be greater than the arrival 
time of the first train at this same node: 

𝑑𝑒𝑝,/,@ ≥ 𝑎𝑟𝑟,,@ +𝑚ℎℯ,'("(,$,@ −𝑀21 − 𝑝,,,/,14	∀𝑒 ∈ 𝐸, (𝑡, 𝑡
J) ∈ 𝑆1 , 𝑣 ∈ 𝐽, , 𝑒

= 𝑣	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,J,1 Eq. 63 

𝑑𝑒𝑝,,? ≥ 𝑎𝑟𝑟,J,? +𝑚ℎℯ,'("(/,$,? −𝑀 ∙ 𝑝,,,/,1	∀𝑒 ∈ 𝐸, (𝑡, 𝑡J) ∈ 𝑆1 , 𝑢 ∈ 𝐽, , 𝑒
= 𝑢	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,J,1 Eq. 64 

 
As for the previous couple of constraints, the first one is relevant if 𝑝,,,/,1 = 1 and the second one if 
𝑝,,,/,1 = 0. 
For each track 𝜏, for each pair of train 𝑡, 𝑡J that may claim it concurrently, we impose that the track 
occupation is not overlapping, also considering the minimum separation time: 
𝑎𝑟𝑟,/,@ ≥ 𝑑𝑒𝑝,,@ + 𝑡𝑔@ −𝑀23 − 𝑠,,,/,V − 𝑧,,V − 𝑧,/,V4	∀𝑣 ∈ 𝑉, 𝜏 ∈ Τ,,@ ∩ Τ,/,@, (𝑡, 𝑡′)

∈ 𝑆V𝑑𝑒𝑝,/,@ ≥ 𝑎𝑟𝑟,,@ +𝑚ℎℯ,'("(,$,@ −𝑀21 − 𝑝,,,/,14	∀𝑒 ∈ 𝐸, (𝑡, 𝑡
J)

∈ 𝑆1 , 𝑣 ∈ 𝐽, , 𝑒 = 𝑣	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,J,1 

Eq. 65 

𝑎𝑟𝑟,,@ ≥ 𝑑𝑒𝑝,J,@ + 𝑡𝑔@ −𝑀22 + 𝑠,,,/,V − 𝑧,,V − 𝑧,/,V4	∀𝑣 ∈ 𝑉, 𝜏 ∈ Τ,,@ ∩ Τ,/,@, (𝑡, 𝑡′)
∈ 𝑆V Eq. 66 

The minimum buffer time on edges 𝑚𝑏𝑒 is the shortest time separating the entrance of two trains 
on the same edge if they travel in the same direction, minus the minimum headway time. 

𝑚𝑏𝑒 ≤ 𝑑𝑒𝑝,/,? − 𝑑𝑒𝑝,,? − ℎ,,,
/ +𝑀23 − 𝑝,,,/,1 − 𝑦,,) − 𝑦,/,)/4		∀𝑒 ∈ 𝐸, (𝑡, 𝑡J)

∈ 𝑆1 , 𝑢 ∈ 𝐽, , 𝑒 = 𝑢	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝜀 ∈ 𝐸𝐸𝐸,,1 , 𝜀J ∈ 𝐸𝐸𝐸,/,1 , 𝑑𝑖𝑟,,1
= 𝑑𝑖𝑟,J,1 

Eq. 67 
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𝑚𝑏𝑒 ≤ 𝑑𝑒𝑝,/,? − 𝑑𝑒𝑝,,? − ℎ,,,
/ +𝑀22 − 𝑦,,) − 𝑦,/,)/4		∀𝑒 ∈ 𝐸, (𝑡, 𝑡J) ∈ 𝑆©1 , 𝑢 ∈ 𝐽, , 𝑒

= 𝑢	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝜀 ∈ 𝐸𝐸𝐸,,1 , 𝜀J ∈ 𝐸𝐸𝐸,/,1 , 𝑑𝑖𝑟,,1 = 𝑑𝑖𝑟,J,1 Eq. 68 

𝑚𝑏𝑒 ≤ 𝑑𝑒𝑝,,? − 𝑑𝑒𝑝,J,? − ℎ,J,, −𝑀22 + 𝑝,,,/,1 − 𝑦,,) − 𝑦,/,)/4	∀𝑒 ∈ 𝐸, (𝑡, 𝑡J)
∈ 𝑆1 , 𝑢 ∈ 𝐽, , 𝑒 = 𝑢	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝜀 ∈ 𝐸𝐸𝐸,,1 , 𝜀J ∈ 𝐸𝐸𝐸,/,1 , 𝑑𝑖𝑟,,1
= 𝑑𝑖𝑟,J,1 

Eq. 69 

If the trains travel in opposite direction, the relevant times are their entrance and exit at the same 
location: 
𝑚𝑏𝑒 ≤ 𝑑𝑒𝑝,/,@ − 𝑎𝑟𝑟,,@ −𝑚ℎℯ,'("(,$,@ +𝑀21 − 𝑝,,,/,14	∀𝑒 ∈ 𝐸, (𝑡, 𝑡

J) ∈ 𝑆1 , 𝑣 ∈ 𝐽, , 𝑒
= 𝑣	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,J,1 Eq. 70 

𝑚𝑏𝑒 ≤ 𝑑𝑒𝑝,/,@ − 𝑎𝑟𝑟,,@ −𝑚ℎℯ,'("(,$,@	∀𝑒 ∈ 𝐸, (𝑡, 𝑡
J) ∈ 𝑆©1 , 𝑣 ∈ 𝐽, , 𝑒

= 𝑣	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,J,1 Eq. 71 

𝑚𝑏𝑒 ≤ 𝑑𝑒𝑝,,? − 𝑎𝑟𝑟,/,? −𝑚ℎℯ,'("(/,$,? +𝑀 ∙ 𝑝,,,/,1	∀𝑒 ∈ 𝐸, (𝑡, 𝑡J) ∈ 𝑆1 , 𝑢 ∈ 𝐽, , 𝑒
= 𝑢	𝑓𝑜𝑟	𝑑𝑖𝑟,,1 , 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,J,1 Eq. 72 

Remark that Eq. 68 and Eq. 71 concern the pairs of trains that use the same edge but for which the 
utilisation order is defined in the input data, due to the minimum and maximum arrival and departure 
times at the extreme nodes. 
Through 𝑝 and 𝑠 variables, this formulation uses disjunctive constraints to guarantee the respect of 
capacity constraints on tracks, following the modelling principles of RECIFE-MILP (Pellegrini et 
al., 2015). However, the two models consider different representations of the infrastructure, which 
here is macroscopic while it is microscopic in RECIFE-MILP. Here, we associate arrival and 
departure times to nodes rather than specific tracks. This explains higher complexity of the 
disjunctive constraints presented in equations Eq. 59 to Eq. 72, in which we need to ensure no 
relation is imposed between times if trains use alternative tracks. 
A set of valid inequalities, also used in by Mannino et al. (2015) for railway scheduling, may be 
implemented for strengthening the model: 
 

𝑝,,,/,1 ≤ 𝑝,,,/,1/ 	∀𝑒, 𝑒J ∈ 𝐽, , (𝑡, 𝑡J) ∈ 𝑆1 ∩ 𝑆1/ , 𝑑𝑖𝑟,,1 ≠ 𝑑𝑖𝑟,/,1	, 𝑒J ≺ 𝑒		𝑓𝑜𝑟	𝑑𝑖𝑟,,1 
Eq. 73 

They exploit the observation that the precedence relation between trains traveling in opposite 
direction propagates along their route. In particular, if two trains 𝑡 and 𝑡′ use a sequence of edges 
including 𝑒, and 𝑡 precedes 𝑡′ on one of 𝑒, the 𝑡 is the first to pass also on all edges 𝑒′ it crosses 
before arriving to 𝑒: 𝑝,,,/,1 = 1⟹ 𝑝,,,/,1/ = 1. From the opposite perspective, if 𝑡′ passes first in 
𝑒′, then it is also first in 𝑒, as for it 𝑒 precedes 𝑒′: 𝑝,,,/,1J = 0⟹ 𝑝,,,/,1 = 0. 

4.3 Integration into the ATMO framework 

Solutions 𝑆 generated by MOACO are then refined through the solution of a MILP formulation. It 
takes as input the train groups to be scheduled, and passing and stopping times at all locations visited 
in their journey. By exploiting the periodicity tolerance of trains belonging to the same group and 
dropping temporal discretization, the formulation slightly modifies these times and seeks for a 
conflict-free solution which optimises the weighted sum of the normalised values in [𝜏d(R, 𝜏:<=] of 
three objectives: TTT, EC, ST. Indeed, the number of trains is constant, as all train groups scheduled 
in 𝑆 are to be scheduled here. Moreover, conflicts are modelled by hard constraints, making their 
minimisation meaningless. The weights considered in the formulation objective function are those 
used by the ant that built solution  𝑆. 
The MILP formulation is allowed to search for improvements just in a neighbourhood of the 
MOACO solutions. This means that bounds are set to the formulation’s variables, and these bounds 
are, in principle, stricter than those considered by the MOACO algorithm. We call them 
“neighbourhood bounds”. In the formulation we have two types of variables: 

• Binary variables control the use of specific tracks at stations and of specific EEEs, as well 
as the precedence between pairs of trains using the same resource.  

• Continuous variables control arrival and departure times, as well as running times and 
energy consumption. 

In the implementation so far developed, we set “neighbourhood bounds” to arrival and departure 
time variables only. They are bounded to be chosen within thin intervals around the ones fixed in 𝑆. 
The maximum allowed time modification is a parameter that we call MILP degree of freedom 
(𝐷𝑂𝐹:;I\). By varying the value of continuous variables, the formulation can: 
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• Shift a whole periodic train group of a maximum value 𝐷𝑂𝐹:;I\; 
• Modify the schedule of individual trains provided that its group’s periodic pattern is 

relaxed within the tolerance permitted in the service concept. 

At now, we do not set any “neighbourhood bound” to binary variables. As it will be recalled in 
Section Errore. L'origine riferimento non è stata trovata. (“Implementation Plan”), future 
research should focus also in setting proper bounds to these variables. 
The restricted variable domains, allow (in principle) for a fast solution. This process returns either 
the optimal solution or an infeasibility due to the modelling of conflicts as hard constraints.   

 

Figure 4. Graphical representation of the MILP formulation operation in the objectives space. 

Figure 4 provides a graphical representation of the operation of the MILP formulation stage in the 
objective function space. Two objectives are considered here. MOACO solutions are blue points. 
Some are conflict-free, other not (the red-circled ones). Dark blue points represent the POS provided 
by MOACO. Green points are MILP solutions obtained starting from MOACO ones. Not all 
MOACO solutions with residual conflict can be converted into a conflict free timetable (red crosses). 
A new POS is originated by the MILP solutions. As the MILP stage only refines the MOACO 
solutions, without adding new ones, this final POS may at most contain the same number of solutions 
as the final MOACO POS, but likely less, as some refined solutions may dominate others. Light 
green points represent MILP solutions which belong to this new POS, while dark green points do 
not.  
As anticipated in Section 2.3, in this research we investigate the application of the MILP formulation 
only for refining the solutions of the POS produced by the MOACO algorithm. The study of how to 
effectively use the MILP formulation as a Local Search to be run within the MOACO’s iterations is 
left to future research activities. 
POSs produced by MOACO could likely feature a significant cardinality. Furthermore, many of 
these timetables would likely present a high number of residual conflicts, so that they could return 
unfeasibility when trying to refining them through the MILP formulation. Applying the MILP 
formulation to all the MOACO POS timetables would therefore result in a significant waste of time, 
since for real-size instances also the construction of the MILP model and demonstration of 
unfeasibility take significant time, of the order of some tens of seconds, 1 minute maximum. With 
MOACO POS with cardinality of several tens, time waste becomes significant. In order to contain 
it, we implement the following procedure: 

1. Solutions of the MOACO POS are sorted in ascending order w.r.t. the number of residual 
conflicts; 

2. A counter 𝑖e3H is initialised to 0; 
3. Sorted solutions are iteratively refined with the MILP formulation: if this operation returns 

an unfeasibility, 𝑖e3H is incremented by 1; 
4. If 𝑖e3H is greater than a given threshold 𝑛e3H, the iterative refinement is stopped. 
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In the presented application, we empirically set 𝑛e3H to 5. Future research should focus on a more 
deepened definition of this threshold, as well as on possible different procedures to manage the 
application of the MILP formulation. 
 

5 Applications and results 

5.1 Test instances 

Tuning and tests are performed on 54 instances drawn from real timetabling practice in Norway. 
Instances are built on two parts of the Norwegian national network, namely the Bergen line 
(Bergensbanen, BB) and the region around Trondheim (Trønderbanen, TRB). These areas form a 
good test-bench for our framework under working conditions. Both are realistic instances of regional 
strategic timetable projects, as well as realistic medium-sized assignments to individual timetable 
planners when partitioning the national network as part of a network-wide project. While this 
partitioning helps overcome the complexity of the TTP, it easily leads to a sub-optimisation of the 
network-wide timetable, for human planners and ATMO alike. 

Table 2. Main characteristics of the test infrastructure 

Infrastructure  BB TRB 
Length 370 200 
Signalling system Conventional Norwegian signalling, based on axel-counters 
Number of timing locations 53 52 
Of which stations 32 30 
Average n° of available sidings in 
stations 

2.3 (excluding the 8-tracks 
Bergen station) 

2.4 (excluding the 13-tracks 
Trondheim station) 

Tuning and tests are performed on 54 instances drawn from real timetabling practice in Norway. 
Instances are built on two parts of the Norwegian national network, namely the Bergen line 
(Bergensbanen, BB) and the region around Trondheim (Trønderbanen, TRB). These areas form a 
good test-bench for our framework under working conditions. Both are realistic instances of regional 
strategic timetable projects, as well as realistic medium-sized assignments to individual timetable 
planners when partitioning the national network as part of a network-wide project. While this 
partitioning helps overcome the complexity of the TTP, it easily leads to a sub-optimisation of the 
network-wide timetable, for human planners and ATMO alike. 
Table 2 provides a concise overview of the main infrastructure characteristics of these lines, while 
Figure 5 frames them within the whole Norwegian railway network. 
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Figure 5. Geographical framing of the considered lines. 

On each infrastructure, different instances are built using a reference daily traffic pattern, whose 
main characteristics are described in Figure 5 and Table 3. For each considered train category (FR: 
freight; LH: long-haul passenger; R: regional) are reported: the number of trains in the two 
directions; the period, just in case relevant trains have to be scheduled with a periodic pattern; the 
number of stations in which trains can stop and use a passing loop; the number of such stations in 
which a stop is mandatory, the remaining ones being optional stops, where a passing is normally 
preferred.  

 

Figure 6. Base traffic on the test infrastructures. 

Table 3. Main characteristics of the main base traffic patterns. 

TRB 
Category FR1 FR2 LH1 LH2 R 
N° trains 5+5 5+5 8+7 6+7 15+16 
 
Period (min) - - - 60 60 

N° usable crossing stations 5 20 6 21 16 
Of which mandatory stops 0 0 6 16 16 
Max stop time (min) 60 60 8 8 5 

BB 
Category FR LH R 
N° trains 8+7 5+5 15+15 
Period (min) - 60 60 
N° usable crossing stations 26 21 21 
Of which mandatory stops 0 21 21 
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Max stop time (min) 60 8 5 
 
From the base traffic patterns, we derive 24 and 30 test instances for the TRB and the BB line, 
respectively. These are produced by combining: 

• Four different sizes of the admissible time windows of train group timings in stations (the 
difference between 𝑎𝑟𝑟 and 𝑎𝑟𝑟 (as well as 𝑑𝑒𝑝 and 𝑑𝑒𝑝) in each location of a train’s 
journey): 15, 30, 60 and 90 minutes (for the TRB line only, also 120 minutes); 

• Six different active train configurations, in which 0 to 5 train groups (randomly chosen in 
the traffic patterns) are deactivated and removed from the scheduling process.  

The input datasets of the instances were prepared using the Treno suite of railway timetable planning 
software (see Medeossi and Nash, 2020) currently used by Jernbanedirektoratet. A prototype 
dedicated interface provides seamless data transfer between Treno and the ATMO framework and 
vice-versa. 
All the 54 resulting instances are tested activating the objectives TTT and ST, in addition to the 
default CFL. As no train group is optional, the maximisation of the number of scheduled trains is 
not meaningful here. As for energy consumption, we excluded it because input data are not currently 
available in the necessary level of detail. 
 

5.2 MOACO assessment 

5.2.1 Tuning 

The proposed MOACO features a remarkable number of parameters, which can hardly be tuned 
manually. The tuning will be performed by means of the IRACE tool (López-Ibáñez et al., 2011). It 
automatically selects the best configuration of continuous, discrete and cardinal parameters among 
those defined as an input, considering a set of reference problem instances. This is an open-access 
state-of-the-art tuning procedure, which can be applied both to single and multi-objective problems. 
It is based on advanced machine learning techniques.  
The parameters setting for the tuning procedure is reported in Table 4. Discrete sets of possible 
parameters configurations are described as comma-separated lists, while continuous ranges are 
reported in square brackets. A bold font highlights the values selected by IRACE. A fixed time limit 
of 500 s a tuning budget (the maximum number of algorithm’s invocation that IRACE can exploit 
to perform the tuning) of 5000 iterations are set. The hypervolume HV (to be maximised, Fonseca 
et al., 2006) is chosen as the comparison KPI. With these settings, the tuning procedure takes almost 
12 days to be completed, on a Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50GHz with 16 CPUs and 
125 GB ram. 

Table 4. Settings and results of the IRACE tuning procedure. “int” annotation highlights intervals defined in 
ℕ, otherwise intervals are defined in ℝ. 

𝑁𝑎𝑛𝑡 20, 35, 50 𝑛7'-89 : 𝑛:-79 0:1, 1:9, 3:7, 5:5, 7:3, 
9:1, 1:0 

𝛼+6 [0, 10] int 3.0 𝑛+7 : 𝑛>!+7 0:1, 1:0, 1:1, 1:2, 1:4 
𝛽+6 [0, 10] int 3.0 𝑝𝑐𝑆𝑜𝑙+7 25, 50, 75, 100 
𝜌+6 [0.01, 0.1] 0.092 𝑁;<= 1, 2, 3 

𝜏'(),+6 [0.05, 1.0] 0,467 Fixed Parameters 
𝜏'-.,+6 [6.0, 12.0] 8.0 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 500 s 
𝛼+, [0, 10] int 2.0 𝑁/012345 5 
𝛽+, [0, 10] int 8.0 𝜆 0.5 
𝜌+, [0.01, 0.1] 0.070   

𝜏'(),+, [0.05, 1.0] 0.618   
𝜏'-.,+, [6.0, 12.0] 12.0   

The tuning highlighted that the alternation between the smart and fast TEG exploration modes 
actually improves the algorithm’s performances, with an optimal ratio of 1:9 respectively. The 
optimal value for 𝑁?^' 	is	 equal	 to	 3. This means that at the end of each iteration, 3 different 
solutions contribute to update the pheromone trails of each colony. This implies that a differentiation 
during the exploration of the solutions’ space is fostered. On the other side, it emerged that the 
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proposed Local Search strategy does not improve the global performances of the algorithm, since 
the tuning decides to not exploit it. This fact will be further investigated in the following. 

5.2.2 Comparisons 

In this section further comparisons between different parameters configurations are presented. We 
considered the following configuration: 

• BEST: The parameters configuration returned by the tuning; 
• GRASP: This configuration implements a Greedy Randomized Adaptive Search Procedure 

(GRASP) obtained from BEST by setting the 𝛼 parameters to 0 (in both L1 and L2), while 
the other ones are left unchanged. In this way we exclude the pheromonal memory from 
contributing guiding the exploration during each iteration. Exploration will therefore be 
guided (in a randomized way) by the heuristic information only. 

• noHeurL1: The dynamic computation of the heuristic factor in Layer 1 is a computationally 
onerous operation. However, the tuning highlights it produces a performances 
improvement. In order to further investigate these behaviours, a configuration in which the 
dynamic computation of the Layer 1 heuristics is turned off (setting 𝛽I* = 0) is tested. 

• BEST+LS: The tuning chooses not to exploit at all the proposed Local Search strategy. 
However, the 5th best configuration identified by IRACE in its internal ranking takes 
advantage of the Local Search with 𝑛IC  : 𝑛R/IC  equal to 1:9 and 	
𝑝𝑐𝑆𝑜𝑙IC	equal	to	25.	This	configuration	is	therefore	tested. 

For each configuration, all the 54 test instances are run, with a random set of seeds. A time limit of 
500 s is set. We then compare pairs of configurations by applying the Wilcoxon test to the 
differences between the HVs returned, for the same instance, with different configurations. The 
Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used to compare two 
populations using a set of matched samples. It returns whether the two samples sets belong to 
different populations (i.e. they are statistically different) and if the considered KPI of one set is 
statistically greater (or minor) than the other, with a given confidence level. This test can therefore 
return if one configuration will “on average” perform better than the other for all the items of a 
hypothetic set from which the test instances are drawn. The confidence level used in our tests is 5 %. 
First of all, we compare the configurations BEST and GRASP. In this way we would asses the 
performances of the whole MOACO algorithm. It is expected that the MOACO algorithm performs 
better than the GRASP one, and the comparison is intended to measure the benefits of the extra 
“artificial intelligence” provided by pheromone. 
Figure 7 reports the values of the HV differences (𝐻𝑉TGCB −𝐻𝑉fK<C\), sorted in ascending order, 
for the 54 instances. Positive values characterise instances for which the MOACO outperforms the 
GRASP. The Wilcoxon test returns that the MOACO performs statistically better than the GRASP. 

 

Figure 7. HV difference between the BEST and GRASP configurations for the 54 test instances. 

Figure 8 reports the number of iterations performed, within the same 500 s time limit, with the 
considered parameters configurations. With reference to the BEST configuration, an average relative 
difference of +1.89 %, + 15.82 % and -48.97 % in the number of performed iterations is obtained 
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for configurations GRASP, noHeurL1 and BEST+LS respectively. For the BEST configuration, the 
number of performed iterations spans between 190 and 4530. 

 

Figure 8. Number of performed iterations within the 500 s time limit. 

Figure 9	reports	the	HV	differences	between	configurations	noHeurL1,	BEST+LS	and	BEST.	
The	Wilcoxon	test	applied	to	these	distributions	revealed	that	both	noHeurL1	and	BEST+LS	
perform	 worse	 than	 BEST,	 thus	 confirming	 the	 tuning	 outputs.	 We	 hypothesize	 that	 the	
significant	overhead	computation	time	required	by	the	Local	Search	prevents	the	algorithm	to	
perform	a	sufficient	number	of	iterations	necessary	to	exploit	at	best	the	pheromonal	memory.	

 

Figure 9. HV difference between the BEST and noHeurL1 and BEST+LS configurations for the 54 test 
instances.	

5.2.3 MILP refinement 

In this section, we report the results obtained when refining with the MILP formulation the 
timetables of the 54 POSs obtained with the BEST configuration. To this purpose, 𝐷𝑂𝐹:;I\	is set to 
20 minutes and the periodicity tolerance of all groups in all relevant locations is set to 10 minutes. 
The MOACO is run until a 500 s time limit is met, and then the MILP formulation is solved 
considering each timetable of the produced POS as input. The MILP formulation is solved by the 
GUROBI 9.1 commercial solver. To comparison purposes, we run two sets of experiments, refining 
the same set of timetables produced by the MOACO using two termination criteria for the MILP 
formulation, namely TC1 and TC2: 

• TC1: the solver stops when either a 2% MIP gap or a 600 s time limit are met; 
• TC2: the solver stops when either a 2% MIP gap or a 900 s time limit are met. 

In this way we aim at assessing the influence of the MILP computation time to the quality and 
quantity of produced solutions. 
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Table 5. Overview of main results from the application of the MILP formulation to the 54 test instances with 
TC1. 
# min CFL max CFL ns ACO ns MILP t MILP (min) # min CFL max CFL ns ACO ns MILP t MILP (min) 
1 0 0 3 3 0,8 28 0 23 5 5 10 
2 0 9 7 1 0,9 29 0 179 13 12 10 
3 0 84 9 9 1,1 30 0 11 6 1 10 
4 0 42 9 9 1,2 31 0 47 9 9 10 
5 0 39 5 2 1,2 32 0 136 14 14 10 
6 90 130 5 5 1,2 33 0 179 15 15 10 
7 0 15 5 2 1,4 34 0 18 6 1 10 
8 66 130 8 8 1,4 35 0 126 11 8 10 
9 0 24 9 9 1,7 36 0 34 8 8 10 

10 11 24 7 7 2,3 37 2 205 23 14 10 
11 3 114 26 15 2,4 38 0 40 11 11 10 
12 32 137 13 13 2,4 39 70 407 19 6 10 
13 0 95 19 15 2,7 40 33 116 13 4 10 
14 2 172 20 13 3,6 41 121 404 23 5 10 
15 8 104 19 5 3,9 42 102 455 28 0 N/F 
16 6 213 23 12 4,3 43 1 9 6 0 N/F 
17 10 11 2 2 7,2 44 3 9 6 0 N/F 
18 0 23 6 6 8,9 45 54 106 11 0 N/F 
19 0 0 5 5 9,0 46 155 330 24 0 N/F 
20 0 0 2 2 9,5 47 35 84 11 0 N/F 
21 0 0 3 2 10 48 61 479 23 0 N/F  
22 0 0 4 4 10 49 150 463 20 0 N/F 
23 0 0 4 1 10 50 1 8 7 0 ? 
24 0 42 6 6 10 51 92 508 24 0 ? 
25 36 159 11 9 10 52 35 103 21 0 ? 
26 4 106 23 10 10 53 1 10 9 0 ? 
27 1 153 19 10 10 54 242 406 18 0 ? 

 
Table 5 reports the results obtained for the 54 instances, with termination criterion TC1. For each 
instance, columns min CFL and max CFL report the minimum and maximum numbers of residual 
conflicts in the timetables produced by the MOACO. Columns ns MOACO and ns MILP report the 
cardinality of the POS before and after the MILP refinement, respectively. The difference between 
these two values indicates the number of timetables for which a conflict-free solution cannot be 
found by solving the MILP formulation. Column t MILP indicates the average computation time in 
minutes per timetable required to solve the MILP formulation, calculated only for those timetables 
for which a feasible solution is found. 
With TC1, for 41 of the 54 instances, the MILP formulation computes at least one conflict-free 
timetable. For 17 of these 41 instances, the 2% MIP gap condition is met for all the MILP-refined 
timetables, while for the remaining 24 the MILP solver find a feasible solution but stops after the 
600 s without reaching the 2 % MIP gap. The MILP formulation does not provide any feasible 
timetable for 13 instances: for 8 of them, unfeasibility is attested (marked as “N/F” in column t 
MILP), meaning that no feasible timetable exists in the neighbourhood of the solutions produced by 
MOACO. For the remaining 5, the MILP solver is not capable to verify whether the model is feasible 
or not within the 600 s time limit (marked as “?” In column t MILP). 
Not all the timetables produced by the MILP refinement belong to a not-dominated POS: on average, 
27 % of refined timetables are dominated and, as such, discarded.  

Table 6. Overview of main results from the application of the MILP formulation to the 54 test instances with 
TC2. 

# min CFL max CFL ns ACO ns MILP t MILP (min) # min CFL max CFL ns ACO ns MILP t MILP (min) 
1 0 0 3 3 0,8 28 0 23 5 5 14,3 
2 0 9 7 1 0,9 29 0 179 13 12 14,5 
3 0 84 9 9 1,1 30 0 11 6 3 14,8 
4 0 42 9 9 1,2 31 0 47 9 9 15 
5 0 39 5 2 1,2 32 0 136 14 14 15 
6 90 130 5 5 1,2 33 0 179 15 15 15 
7 0 15 5 2 1,4 34 0 18 6 3 14,7 
8 66 130 8 8 1,4 35 0 126 11 8 14,8 
9 0 24 9 9 1,7 36 0 34 8 8 15 

10 11 24 7 7 2,3 37 2 205 23 14 15 
11 3 114 26 15 2,4 38 0 40 11 11 15 
12 32 137 13 13 2,4 39 70 407 19 6 15 
13 0 95 19 15 2,7 40 33 116 13 7 15 
14 2 172 20 13 3,6 41 121 404 23 11 15 
15 8 104 19 5 3,9 42 102 455 28 0 N/F 
16 6 213 23 12 4,3 43 1 9 6 0 N/F 
17 10 11 2 2 7,2 44 3 9 6 0 N/F 
18 0 23 6 6 10,2 45 54 106 11 0 N/F 
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19 0 0 5 5 10,5 46 155 330 24 0 N/F 
20 0 0 2 2 13,4 47 35 84 11 0 N/F 
21 0 0 3 2 13,2 48 61 479 23 0 N/F 
22 0 0 4 4 13,6 49 150 463 20 0 N/F 
23 0 0 4 2 14,2 50 1 8 7 2 15 
24 0 42 6 6 14 51 92 508 24 0 ? 
25 36 159 11 10 14,1 52 35 103 21 0 ? 
26 4 106 23 12 14,8 53 1 10 9 2 15 
27 1 153 19 12 14,8 54 242 406 18 0 ? 

Table 6 reports the same set of indicators, computed with termination criterion TC2. The instances 
ordering in Table 6 is the same as in Table 5, so that, for example, instance #3 is the same in the two 
sets of experiments. The table highlights how, in general, by allowing more 5 minutes more, the 
solver is capable to return a higher number of conflict-free timetables. Blue lines in Table 6 highlight 
those instances for which the number of conflict-free timetables obtained with TC2 is major than 
that obtained with TC1. Furthermore, for two of the instances for which with TC1 no feasible 
timetables could be found but at the same time model unfeasibility could not be assessed, with TC2 
two feasible timetables can be computed. 
 
 
 

 

Figure 10. Improvement in the values of objectives TTT (blue bars) and ST (green bars) produced by the MILP 
refinement with TC1. 

Figure 10 describes the average percentage improvement in the objective functions’ values produced 
by the MILP refinement, for those instances for which at least one feasible timetable is found with 
TC1. Blue bars refer to improvement of the TTT objective, while green bars to the ST one. The 
figure highlights how dramatic improvements are produced by the MILP formulation, thanks to the 
exploitation of periodicity tolerances. Indeed, it is well-known that the enforcement of rigid periodic 
patterns is a severe capacity constraint mainly for operations on single track (Emery, 2010). 
When comparing percentual improvements obtained with TC1 and TC2, it can be pointed out that 
only minor improvements (on average on all instance, of the order of 3.5 %) in the value of both the 
objective functions can be achieved by lengthening the MILP solver’s computation times. It can be 
inferred that, at least in the analysed instances, the main and significative effect of computation times 
prolongation is the greater number of feasible timetables that can be produced.	
 

5.3 Application case study 1: Assessment of infrastructure variants on the Bergen Railway 

In this section the ATMO is applied to an infrastructure planning case study exercise on the BB 
infrastructure. The case study considers the 370 km single-track railway line between Bergen and 
Hønefoss. The existing infrastructure is designated as scenario zero (S0) and two infrastructure 
improvement scenarios are defined each of which added 50 km of double track along the line. In 
scenario 1 (S1) three double track sections are placed equally spaced along the line. In scenario 2 
(S2) a single long double track stretch is placed approximately in the middle of the line.  
The case study objective is to develop conflict-free timetables that maximises the number of freight 
trains that could be scheduled in a 24-hours day (starting at midnight) and minimises additional total 
travel time required due to crossings, given a specified passenger train timetable. Therefore, two 
algorithm objectives are activated, namely minimisation of additional travel time and maximisation 
of number of scheduled optional trains. This illustrates how the tool’s multi-objective approach 
enables planners to easily study the relationships between multiple objectives (in this case two 
objectives). 
Three traffic patterns are defined in the case study: 
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• FR: line capacity should be saturated with up to 37 freight trains. 
• LH+FR: 10 quasi-periodic long haul passenger trains (5 in each direction) must be scheduled; 

the remaining capacity should be saturated with up to 37 freight trains. 
• R+LH+FR: In addition to the long-haul passenger trains, 30 periodic regional trains (15 in each 

direction) must be scheduled following a clock-face headway pattern between Bergen and 
Myrdal in the time window 7:00 AM to 10:00 PM, the remaining capacity should be saturated 
with up to 37 freight trains. This traffic pattern features 77 trains and 16547 train∙km. 

In addition to the base traffic patterns, the case study also tests the influence of periodicity tolerances 
in the periodic pattern of passenger trains. To this purpose the following two sets of traffic patterns 
are constructed to be overlaid on the base one: 
• “X” pattern where strict periodicity is required (no periodicity tolerance). 
• “T” pattern where a tolerance of ±15-minutes for long-haul trains and ±5-minutes tolerance for 

regional trains is allowed at all stations. 
The infrastructure alternatives and service concepts were are for the ATMO tool using the Treno 
suite of railway timetable planning software (see Medeossi and Nash, 2020) currently used by 
Jernbanedirektoratet. A dedicated interface provides seamless data transfer between Treno and the 
ATMO tool and vice-versa. The infrastructure scenarios as well as the base service concepts are 
illustrated schematically in Figure 11. 
Freight trains are set as optional, this means the algorithm can choose whether to schedule them or 
not. This enables the ATMO to search for the best trade-off between number of scheduled trains and 
additional travel time. 
 
 

 

Figure 11. Case study infrastructure and service concepts. 

The combination of three infrastructure alternatives and six service concepts leads to 18 scenarios. 
The ATMO tool is applied to all 18 scenarios. The following termination criteria are set to the 
algorithmic framework. The MOACO algorithm is stopped after a 30-minute time limit. Then the 
MILP formulation is applied to all the timetables in the provisional POS. The MILP formulation is 
solved using the GUROBI commercial solver, which stops when a 2% MIP gap (an indicator which 
measures how far the current solution is from its estimated optimum) or a 5-minute time limit is 
met. In the 85 % of the experiments for which the MILP formulation returns a feasible solution, the 
MIP gap termination condition is met. Differently from the test described in Section 5.2, experiments 
are carried out on a MacBook Pro with 2.6 GHz Intel Core i7 6 core processor and 16 GB RAM. 
The choice of this machine intends to provide a snapshot of the algorithm’s performances closer to 
real practice. 
Figure 12 presents the results as approximations of the Pareto fronts relevant to the X scenarios (no 
periodicity tolerance allowed). The points composing the fronts (lines) represent actual conflict-free 
timetables produced by the algorithm. Each point on the line quantifies the key performance 
indicators (KPIs) selected for this case study, namely the number of scheduled freight trains and the 
total additional travel time due to crossings. Each point on a line is Pareto optimal, in other words it 
is the maximum possible number of freight trains for the given additional travel time. 
The lines display the best trade-off between the objectives (KPIs) for each infrastructure / service 
concept scenario. This means that timetables falling under and to the right of the Pareto front lines 
can be designed, but do not use capacity optimally (more freight trains could be operated with the 
same total delay). Similarly, timetables falling in the sector over and to the left of the Pareto front 
lines cannot be designed without causing traffic conflicts. In particular, the figure shows that an 
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upper bound exists for the number of freight trains which it is possible to schedule in each scenario, 
no matter how much additional travel time is scheduled. 
 

 

Figure 12. Pareto Fronts Representing Capacity Utilisation Trade-off for Analysed Scenarios. Colors refer to 
the three service concepts considered in the case study. The solid lines represent the infrastructure baseline 
S0, the dashed lines represent alternative S1, and the dotted lines alternative S2. 

In terms of strategic planning the results presented in  Figure 12 can be used to make the following 
conclusions regarding the case study: 
• The difference between infrastructure scenarios S1 and S2 only arises when passenger trains 

are scheduled. In this case, S1 performs better than S2. When only freight trains are considered, 
there is no difference between S1 and S2. 

• The presence of passenger trains strongly affects the maximum number of freight trains that 
can be scheduled. In LH+FR scenarios, the maximum number of schedulable freight trains is 
18.8 % lower than in the FR scenarios (based on 3 FR scenario average). In R+LH+FR 
scenarios, this percentage increases to 44.7 %. Or, looked at another way, total additional travel 
time increases significantly when passenger trains are added to timetable with a specified 
number of freight trains. 

• Adding double track increases the number of freight trains that can be operated under all 
service scenarios for a given additional travel time. This is due to reducing the number of stops 
for crossings, which can now be performed in double track stretches. In particular, considering 
the upper-right extremities of the Pareto fronts, in scenarios S1 an average travel time reduction 
of 36.3 % can be achieved compared to scenarios S0 (average value over the three service 
concepts). For scenarios S2, the average reduction is equal to 26.8 %. 
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Figure 13. Influence of Periodicity Tolerances. Green lines refer to the X traffic pattern (strict periodicity) 
and blue to the T traffic patterns (with periodicity tolerances). Solid lines refer to the S0 baseline, the dashed 
lines represent S1, and the dotted lines represent the S2 infrastructure alternatives. 

 

Figure 13  illustrates the influence of periodicity tolerances in the passenger train traffic patterns 
(“T” scenarios). As shown, allowing more flexibility over a rigid periodic pattern is an effective 
measure for reducing the time losses due to crossings. The general findings for the infrastructure 
alternatives are the same both in “X” and “T” scenarios. 
This simple case study highlights the benefits of the new ATMO tool. Using a multi-objective 
optimisation and Pareto fronts, it provides planners with much more information than a classic 
timetabling approach which produces just one timetable at time. 
Furthermore, the tool also can produce these timetables efficiently. Table 7 illustrates the 
computation times required to produce the relevant Pareto front as well the number of timetables 
returned as an output for each scenario analysed in the case study. Columns # TT tot report the total 
number of generated timetables, while columns # TT POS how many of them belong to the actual 
POS for each scenario. The figure shows how the use of a multi-objective metaheuristic combined 
with a MILP-based refinement can be used to produce a significant number of timetables in a 
relatively small computation time. In total, the case study required approximately 13.6 hours of 
computation time (it can be run overnight) and produced 822 timetables. 
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Table 7. Number of calculated timetables and computation times for each scenario. 

scenario S0 S1 S2 
 # TT tot # TT POS c.t. (min) # TT tot # TT POS c.t. (min) # TT tot # TT POS c.t. (min) 

FR 37 28 32,2 76 29 56 70 28 35,7 

R+LH+FR X 53 10 107,2 34 8 68,5 37 7 74,9 

LH+FR X 41 13 39,1 126 18 52,7 55 15 38 

R+LH+FR T 30 10 62,3 59 8 66,1 38 8 67,3 

LH+FR T 27 13 37,9 68 18 35,2 71 14 44,3 

In summary, the case study showed how the ATMO tool can be used to improve the strategic 
planning process by efficiently creating many feasible timetables for comparing infrastructure – 
service concept scenarios. As illustrated in the case study, the ATMO tool results, although based 
on aggregated KPIs, are effective as a first step during strategic capacity analysis of timetable 
planning. They provide planners with a quick overview of the main trends for the KPIs 
The results also help planners identify problem areas to be studied in detail. More specifically, each 
point on a POS line represents an actual timetable that can be further analysed using microscopic 
timetable-planning software. This detailed study would use the standard methods, i.e., an iterative 
loop of manual adjustments and traffic simulations, to design-test-analyse the specific issues of 
interest. 

5.4 Application case study 2: Passenger traffic scheduling on the Western Oslo node 

The purpose of this application case study is to assess the computational limitation of the ATMO 
tool. To this purpose, we apply it to a computationally “hard” TTP instance, that is the scheduling 
of a half-day of passenger railway traffic on the Western Oslo Node. The choice of scheduling a 
half-day only derives from previous experiments, which pointed out that the entire day is totally too 
onerous from a computational perspective to be tackled by the current version of the tool. 

 

Figure 14 

The considered infrastructure is schematically represented in Figure 14. It is composed by two sets 
of lines:  

• The two west-bound double-track lines exiting the Oslo Sud station, which run in an 
approximately parallel way and merge in Asker station. The southern line features several 
intermediate halts, while the northern one is designed to provide a more direct route to 
Asker. We therefore define two routes for trains running between Oslo Sud and Asker: 
Route 1 on the northern line, Route 2 on the southern one. 

• The single-track lines (some of them featuring partial double track stretches) Asker-
Spikkestad, Drammen-Skien, Drammen-Hønefoss and Hokksund-Kongsberg. 
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The main features of the service concept to be scheduled on this infrastructure are reported in Table 
8. For train group, identified by its two termina stations, the number of courses of the two directions 
as well as the used route between Oslo S and Asker are reported. As anticipated, we consider only 
courses departing from the first station of their journey in the time slot 00:00 – 12:00. All these train 
groups are modelled as movable ones, with fixed stopping pattern (no optional stops allowed). 
Maximum stop times and periodicity tolerances are defined separately for two sets of stations: 

• Stations belonging to the two routes (between Asker, comprised, and Oslo S): maximum 
stop time equal to 2 minutes, periodicity tolerance equal to 2 minutes;  

• All the other stations: maximum stop time equal to 6 minutes, periodicity tolerance equal 
to 10 minutes. 

Table 8. Main characteristics of the service concept. 

Train group N° courses Route 
Oslo S-Skien 6 / 11 1 
Oslo S-Asker 12 / 12 2 
Oslo S-Asker 6 / 0 1 

Oslo S-Stabekk 31 / 30 2 
Oslo S-Skøyen 6 / 0 0 

Oslo S-Kongsberg 8 / 11 1 
Oslo S-Hønefoss 2 / 0 1 
Oslo S-Drammen 41 / 48 1 
Oslo S-Spikkestad 12 / 12 2 

This service concept features 248 courses and 20775 train∙km, and it is deemed to be a sufficiently 
“hard” TTP instance to be solved by the ATMO tool. With this input dataset, a set of experiments 
have been run, aiming at understanding where the limitations of the current version of tool lay, from 
both a practical and a theoretical point of view.  
To this purpose, we define 6 test configurations by setting different values of the time limit to the 
MOACO algorithm and to the Gurobi solver tackling the MILP formulation. Table 9 describes these 
configurations. The 2% MIP gap termination criterion is used for all test configuration too.  

Table 9. Test configurations. 

# Test Time limit MOACO (s) Time limit MILP solver (s) 
1 1800 1800 
2 1800 3600 
3 3600 1800 
4 3600 3600 
5 7200 1800 
6 7200 3600 

 
The target of the experiments is to analyse how the quantity and quality of the solutions is affected 
by the limits on the computation time. For each test configuration, Table 10 reports the number of 
iterations performed by MOACO (n Iters ACO), the size of the POS provided by MOACO (ns ACO) 
as well as by the MILP refinement (ns MILP). Furthermore, column min CFL ACO indicates the 
number of residual conflicts present in the MOACO POS timetable with the best value of this 
objective, while column best TTT ACO displays the value of the TTT objective for this timetable. 
Finally, column best TTT MILP reports the value of the TTT objective of the best timetable 
(according to TTT) present in the POS returned by the MILP refinement. The last column indicates 
the total computation time required to run each configuration test. 

Table 10. Results obtained for the test configurations. 

# Test n Iters ACO ns ACO ns MILP min CFL ACO best TTT ACO best TTT MILP el.t. (h) 
1 436 6 0 286 214593 - 3,4 
2 889 7 0 298 215145 - 4,5 
3 874 11 0 256 213565 - 6,5 
4 902 9 5 263 208165 14906 8,3 
5 1673 19 4 240 239725 13805 8,5 
6 1725 15 10 239 196405 13174 9,1 
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Results highlight how the Western Oslo Node actually represents a hard TTP instance to be tackled 
with the ATMO tool. In facts, comparing the current ratios of computation time and number of 
provided with those of the Bergen Railway application case study (Section 5.3), it can be noticed 
that they are now dramatically significantly higher. 
Furthermore, with configurations 1,2,3 the MILP formulation is not capable to refine any of the 
timetables produced by the MOACO. In these cases, the time limit set for the MILP solver is reached 
before any feasible timetable is calculated, without, on the other side, demonstrating unfeasibility. 
It can be inferred that a 1800 s time limit is not sufficient for the MOACO algorithm to provide 
timetables sufficiently optimised to be easily refined by the MILP formulation. With a 3600 s 
MOACO time limit, feasible solutions can be found by the MILP solver if a 3600 s time limit is set 
to the latter.  
Finally, when letting the MOACO algorithm run for 7200 s, in 1800 s the MILP solver is capable to 
compute feasible timetables. If a time limit of 3600 s is allowed for the MILP solver, the quantity 
and the quality (in terms of the TTT value of the best POS solution, column best TTT MILP) of the 
provided solutions are significantly improved. 
These tests confirmed that the current version of the ATMO tool must be further improved in terms 
of performances to efficiently tackle large size instance as the Western Oslo Node. Furthemore, it 
has been pointed out how the blending of the MOACO algorithm and the MILP formulation (+ 
solver) has to be properly tuned to achieve sufficient quality and quantity of solutions while 
containing the computation times. An outlook of possible ways to achieve these improvements are 
presented in the conclusions. 

6 Conclusions and future research potential 

This document describes a novel algorithmic framework for automatic railway timetable generation, 
integrated into the ATMO tool prototype. Thanks to its multi-objective approach, it is suited to 
perform strategic timetabling and timetable-based capacity analysis, since it provides the user with 
sets of Pareto-optimal timetables according to 4 different KPIs, thus matching the requirements set 
by the Norwegian Railway Directorate for the present project.  
It has been described how the ATMO algorithmic framework is composed by the integration of an 
original MOACO algorithm and a MILP formulation, focusing on the features of the MOACO 
algorithm which constitutes, to the best of our knowledge, an original contribution to the field of 
solutions methods for the TTP. 
A series of application cases are discussed, highlighting on the one hand the current ATMO 
performances are adequate to effectively solve TTP instances with up to 70 daily trains to be 
scheduled on (mainly) single track lines. On the other hand, the Western Oslo Node instance, with 
more than 2 hundred trains to be scheduled in a 12-hours’ time window proved to be too demanding 
for the current version of the tool, putting in evidence the need for further improvements. 
In facts, the ATMO tool produced as an output of the present project and its algorithmic framework 
should be regarded as still at an early-stage development phase. In facts, it is suitable to be improved 
in different ways, which are presented in the following.  

Local Search 

Numerical tests highlighted that the proposed Local Search strategy designed to improve the 
solutions produced by ants actually fails to do that, possibly because of its significant computational 
overhead. This calls for the development of alternative heuristics to be used as Local Search. Several 
techniques have been assessed in ACO-related literature, but none of them deals explicitly with the 
solution of the TTP. This was the main reasons behind the choice of developing the dedicated Local 
Search procedure described in this deliverable. Efforts must be performed in adapting effective 
Local Search procedures from literature. 
The usage of the MILP formulation as Local Search throughout the MOACO could be an effective 
measure, and must be properly studied. Since the computation time to solve the MILP formulation 
would be higher than that required by a simpler heuristic, a proper application criterion must be 
carefully designed. On the other side, the MILP model is actually different from that used by the 
MOACO, because of the hard conflict constraints and of the periodicity tolerances. This implies that 
the variables’ spaces of MOACO and MILP are different. For this reason, once a MOACO solution 
is refined by the MILP formulation, it can be compared with MOACO ones in the objectives’ space 
only, but no more in the variables’ space. This fact must be carefully addressed while implementing 
the usage of MILP as a Local Search. 
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Progressive Refinement 

The MOACO algorithm could be improved by introducing a progressive refinement of its model, 
following the approaches proposed by. 
Walshaw (2004) and Blum et al. (2008) proposed the so-called progressive refinement techniques 
for improving the performances of meta-heuristic optimisation algorithms. A progressive refinement 
is performed when a problem can be represented by a set of models (in case of ACO they are the 
construction graphs) of increasing granularity or resolution. In principle, given a constant size of the 
search space, a lower resolution implies a lower number of variables. On the one hand, a “coarse” 
model can in principle be explored faster than a high-resolution one. On the other hand, an optimal 
solution on a coarse model will be sub-optimal in a high-resolution one, but an optimal solution on 
a high-resolution level is likely to lay in a neighbourhood of an optimal solution of a low-resolution 
one. 
With this approach, the algorithm (whatever it is, being genetic, tabu-search, ACO, etc.) starts 
searching an optimal solution on the coarser level, then it swaps to a more refined one but restricting 
the search in a neighbourhood of the already found optimal solution. The procedure continues until 
the most refined level is reached. Notice that in the proposed ATMO framework this approach is 
already implicitly implemented, since the MILP formulation model is basically a refined version of 
the MOACO ones (time as a continuous variable, periodicity tolerances). Within the very MOACO, 
this approach can be explicitly implemented in two ways:  

1. by progressively reducing the groups’ time discretization;  
2. by allowing some trains to be virtually extracted from their strictly periodic group, 

explicitly modelling the periodicity tolerances used by the MILP formulation in the 
MOACO algorithm too.  

Dedicated research should define and test proper application criteria for these two techniques, 
considering the active objectives. For instance, refinement could be applied to the most conflictive 
trains (groups) in order to help the MOACO to produce solutions with a lower number of residual 
conflicts. 

Conflicts and stability KPIs 

In this study the KPI for the objective CFL (Minimisation of conflicts) is the number of conflicts 
themselves. A possible alternative could be to compute the total size of the overlap between the 
concurrent utilisations slots on the same infrastructure resource which result into a conflict. In this 
way, two conflicts, one with a “large” overlap, the other with a “little” overlap, will count in different 
ways in the objectives’ computation. With the current version, their contributions are absolutely the 
same. It can be hypothesised that the utilisation overlap KPI would likely help to MOACO to 
produce solutions for which the MILP formulation can find a feasible timetable in an easier way. 
In this study stability is modelled by means of the a-priori ((according to Goverde and Hansen, 
2013)) KPI “minimum buffer time in the timetable”, to be maximised. To this purpose, many other 
KPIs could be certainly designed, provided that they can be integrated into the sequential solution 
construction implied by the MOACO. Further research should focus on a comparison between 
possible different stability KPIs. Microsimulation of the generated timetables can be used to get a-
posteriori stability indicators.  
It is worthwhile to point out that the overlap KPI can be extended to act as an a-priori stability KPI, 
since the overlap is basically a “negative buffer time” (and can be computed like a buffer time). This 
observation paves the way for future possible utilisation of just one single objective for CFL and 
ST. 

Neighbourhood for MILP refinement 

In this study, the neighbourhood of the MOACO solutions to be explored by the MILP formulation 
is defined for time variables only. Other variables (station tracks, EEEs) are let free to vary 
regardless of the choices performed in the MOACO solution. Future research should focus on an 
effective definition of a neighbourhood for these variables too, in order to reduce MILP computation 
times, possibly without major quality detriment of solution quality. 

Bulk timetables analysis 

Application experiments highlighted how the ATMO returns the user with a potentially high number 
of timetable variants. This number would further dramatically increase if the user is interested not 
only on the Pareto Optimal Set of solutions, but in all (or at least a part) the feasible solutions 
produced during the algorithm’s iterations. Such a number of timetables can be exploited to perform 



 46 

analysis based on timetable patterns recognition which could provide more insight on the ways 
capacity can be used. Methods to massively analyse whole sets of timetables should therefore be 
developed, opening a novel (to the best of our knowledge) direction in the field of Railway Operation 
Research. 
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