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Abstract 
This professional paper presents the algorithmic framework for automatic timetable 
generation which is actually under development within the research project “Tools for 
mathematical optimization of strategic railway timetable models” funded by the Norwegian 
Railway Directorate. This framework is composed by two main components, which tackle 
the Train Timetabling Problem in a macroscopic model of infrastructure and operations. 
The first stage is a Multi-Objective Ant Colony Optimization (MOACO) algorithm which 
produces a Pareto Optimal Set of solutions. These are timetables optimized with respect to 
four main objectives, namely: the total travel time, the total energy consumption, the 
timetable robustness and the total number of scheduled trains. The MOACO treats conflict 
constraints as soft ones and produces strictly periodic traffic patterns. The second stage is a 
MILP formulation tackled with a commercial solver. It refines timetables produced by 
MOACO, looking for improvements in the neighbourhood of the solutions provided by the 
latter. MILP solutions are conflict-free timetables and can profit of given tolerances on 
trains periodicity. The MILP stage is used as a final refinement of the results as well as an 
intermediate local search during MOACO iterations. 
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1 Introduction 

This paper presents an algorithmic framework to perform strategic timetabling, 
developed within the project “Tools for mathematical optimization of strategic railway 
timetable models” funded by the Norwegian Railway Directorate (JDir) and carried out by 
TrenoLab and Gustave Eiffel University. The aim of the project is to develop a prototype 
tool to automatically generate timetable draft, in order to help planners to perform tasks as 
capacity studies and strategic timetable planning. 
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These tasks require to look at infrastructure capacity as a limited resource that can be 
exploited in different ways. Our framework is based on a multi-objective approach to 
provide the user with a set of timetables representing an approximation of a Pareto-Optimal 
Set (POS) in the objective functions (hyper-) space. The POS represents the best- found 
way to exploit the available capacity, and is constituted by a set of non-dominated solutions, 
being a solution a timetable. 

The Train Timetable Problem (TTP) is a classical problem in the field of Operations 
Research. It is notoriously NP-hard, meaning that for large instances exact methods likely 
fail to return the optimal solution in a reasonable time. No guarantee exists to find even high 
quality feasible solutions quickly. Here, the size of practical interest instances is typically 
“large”. Furthermore, exact methods as those based on an integer linear programming 
formulation tackled by commercial solvers cannot manage Paretian multi-objective 
optimization within a single algorithm run. To this purpose, they need to be run repeatedly, 
involving significant time consumption. 

Metaheuristics are algorithmic principles that can be instantiated to tackle virtually any 
optimization problem. They have proven to be effective in tackling combinatorial NP-hard 
problems as the TTP. On one hand, they can provide rather “good” solutions within a 
reasonable computation time. Furthermore, they can be easily extended to perform multi-
objective optimization, and in particular to search for a POS of solutions. On the other hand, 
they often rely on sets of parameters that shall be carefully tuned and they cannot ensure 
the solution’s optimality. 

In our approach, we exploit the two perspectives, by combining an Ant Colony 
Optimization (ACO) algorithm and a Mixed Integer Linear Programming (MILP) 
formulation tackled by a commercial solver. 

2 Input and output 

We adopt a macroscopic model for infrastructure and operations, based on a multigraph, 
where nodes are stations and edges line stretches connecting consecutive stations. Edges 
can be mono- or bi-directional, and more than one edge can connect the same pair of 
consecutive stations. 

Infrastructure input data describe the rolling stock / infrastructure interaction: for each 
edge and rolling stock type, the minimum technical run times, the minimum energy 
consumption and the minimum headways are provided. Minimum energy consumptions 
and headways are computed for trains (pairs of trains, in case of headways) travelling at 
their minimum technical run time. In our model, the relationship linking run times with 
energy consumptions and headways is modelled as a linear one. 

Timetable input data describe the train services that shall be scheduled in the resulting 
timetables. This information is provided for each train group, being a train group set of 
periodic trains. Three types of group can be defined: fixed groups represent a mere 
constraint to the timetabling process; movable group can be adjusted in time and space to 
optimize the resulting timetables; optional group can also be de-activated by the algorithm. 

Each group is qualified by a period, a number of courses, a priority factor and an 
admissibility region in time and space. The latter defines the path (in time-space), the 
available station tracks in each node, the minimum and maximum stop, arrival and departure 
times in each station. If time-admissibility allows some flexibility, we say that the group is 
movable. In each station on the group’s journey, a periodicity tolerance is defined. It will 
allow the algorithm to schedule the group’s courses with some deviation from the strictly 
periodic pattern. Spare courses are modelled as single-train groups. 
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To perform multi-objective optimization, we consider the following objectives: 
1. Minimization of the total weighted travel time of trains; 
2. Minimization of the total weighted energy consumption; 
3. Maximization of the total weighted number of optional train groups actually 

scheduled in the resulting timetable; 
4. Maximization of the timetable robustness. 

All these objectives are computed by means of specific KPIs, calculated on the resulting 
timetables: 

1. Travel times are trivially calculated as the difference between the arrival time at a 
train’s last station and the departure time from the train’s first station. The total 
travel time is the weighted sum of the trains’ travel times, weights being 
proportional to train priorities. 

2. Energy consumption strictly depends on the running times of trains in each 
infrastructure edges, as well as on whether trains perform passes or stops in stations 
where both options are allowed. All energy consumption values are input data. The 
total energy consumption is the weighted sum of the trains’ energy consumptions, 
weights being proportional to train priorities. 

3. The total weighted number of optional trains scheduled is trivially computed 
taking into account train priorities. 

4. Robustness can be evaluated by means of several KPIs (see Goverde and Hansen, 
2013). For a strong integration within the ACO architecture, we consider a KPI 
that can be incrementally computed during the solution construction. Specifically, 
we maximise the minimum buffer time in the timetable. A buffer time is the time 
separation between two feasible consecutive utilisations of the same infrastructure 
part (line stretch or station track) minus the minimum separation imposed between 
them (minimum technical headway). 

3  Algorithm architecture 

In principle, the ACO algorithm performs a broad exploration of the problem space, 
selecting a POS of “promising” solutions. They are further refined by the MILP formulation 
tackled by a commercial solver, which looks for improvements in the neighbourhood of the 
solutions provided by ACO. 
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Figure 1. Global architecture of the algorithm. 
 
Figure 1 displays the architecture of the algorithm. Grey ovals represent data contents, 

blue rectangles processes and orange diamonds conditional switches. Solid arrows mark the 
operations flows, while dashed ones data feedings. Starting from input data, the Multi-
Objective ACO (MOACO) through multiple iterations maintains and updates a provisional 
POS. The best-so-far solutions in this POS guide the ACO search during subsequent 
iterations via the pheromone trails. The MILP formulation further improves these solutions. 
It plays a double role: first, it acts as a Local Search which refines some of the POS solutions 
during the MOACO search process. Alternatively, local search is performed by a simpler 
heuristic. The criterion for selecting the local search procedure is defined by the user. For 
example, MILP local search can be performed once every ten iterations. Second, after the 
MOACO algorithm stops according to a termination criterion, the MILP formulation refines 
all the solutions in the POS before their presentation to the user. 

The MILP formulation deals with a model that is slightly different from the one 
considered by MOACO. 

On the one hand, conflict constraints (both in line stretches and in station tracks) are 
relaxed within the MOACO algorithm to improve its searching capability. In particular, 
MOACO uses an additional objective, i.e., the minimization of conflicts. As it is explained 
in Section 4, priority is accorded to conflict minimization with respect to the other 
objectives. Yet, some residual conflicts may remain in the MOACO timetables. They are 
solved (if possible) in the MILP stage, which considers conflict constraints as hard ones. 

On the other hand, MOACO enforces rigid regular intervals between trains of the same 
train group. This permits to dramatically speed-up the exploration. However, it makes it 
impossible to profit of periodicity tolerances (defined as input data) to solve conflicts and 
improve objective function values. In the MILP formulation, train paths are free to vary 
exploiting the abovementioned tolerances. 
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4 MOACO for the TTP 

In this section, we provide an overview of our original Ant Colony Optimization 
algorithm for the multi-objective automatic railway timetable generation. The proposed 
ACO is a multi-objective extension of the Max-Min Ant System algorithm. The designed 
ACO extension follows the guidelines proposed by López-Ibáñez and Stützle (2012) for 
multi-objective optimization. 

In MOACO, we define a two-layer architecture. It applies to the TTP an approach 
already used for ACO applied to the Multi-Depot Vehicle Routing Problem (Yao et al. 
(2014)) and to the Course Timetabling Problem (Nothegger et al. (2012)). This two-layer 
architecture actually mimics the real-world timetabling procedure, performed mainly by 
hand by specialized timetable planners. Two basic actions can be identified in this 
procedure: 

A1. The selection of the next train group to be scheduled. Here we also include the 
decision whether to schedule or not an optional train. Two main criteria may guide 
this choice: 

a. The priority of each train group, with respect to the other ones. In 
principle a higher priority train should follow its ideal timetable path 
more than a lower priority one. A train scheduled before another one is 
likely to be designed closer to its ideal path since it is subject to fewer 
constraints. 

b. In case of optional train groups, the estimation of existing conflicts with 
already scheduled ones. This may lead to the decision of not-scheduling 
a train group in case it is believed that it would not fit into an already 
populated timetable. 

A2. The scheduling of a certain train group within a timetable already populated by 
previously set train-paths. The scheduling will actually define the arrival and 
departure times, as well as the utilised station track, of the train group in each 
station of its journey. 

In principle, an action A1 (selection of the next train group to be scheduled) is always 
followed by an action A2 (scheduling of the selected train group). A2 is skipped when A1 
chooses not to schedule a certain train group. In reality, timetable planners iteratively repeat 
pairs of A1-A2 actions. 

 
Exploiting this architecture, we define two types of graph to be explored by artificial 

ants in MOACO.  
A Layer 1 graph is associated to actions of type A1. They concern the decision of which 

group of trains actually figure in the timetable and in which order they are scheduled.  
A set of Layer 2 graphs is associated to actions of type A2. These are time-expanded 

directed graphs (TEG). They refer to path schedule decisions, considering one group of 
trains in each graph, as proposed by De Fabris et al. (2014). TEG’s nodes represent discrete 
timetable events of the first train of the group, i.e. the arrival (or departure) at (from) a 
certain station, at a certain time, at a certain station track, with or without a stop. The 
definition of discrete timetable events requires to discretize time. A 30 seconds or 1 minute 
time discretization is suitable to the TTP. TEG’s edges represent transitions, in stations or 
line stretches. A station transition represents a train stopping or passing at a certain station, 
while a line transition represents a train travelling from a station to the following one. A 
path on the TEG completely describes the timetable of the first train of each group. Fig. 2 
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shows an example of TEG, in which the stop at Station 1 is possible using three different 
tracks. These alternatives are presented with pairs of arrival and departure nodes with 
different degrees of transparency. For each degree, different nodes correspond to different 
times. The edges connecting most departure nodes from Station 1 and arrival nodes of 
Station 2 are omitted for readability. 

 

 

Figure 2. Example of a Layer 2 graph (partial representation) for a train group. Station 1 
nodes are displayed for three different station tracks with different transparency degrees. 

 
Our ACO algorithm exploits this structure. We consider that a TTP solution (i.e. a 

railway timetable) is obtained by the combination of the following partial solutions (PS): 
• A Layer 1 solution, which models the sequence of actions A1, defining: 

o Which trains actually figure in the resulting timetable; 
o The order in which these trains are scheduled. 

• A set of Layer 2 solutions, one for each scheduled train. Each of them describes 
how a train is actually scheduled, in terms of arrival/departure times and used track 
in each station. 

 
A clique on the Layer 1 graph is a Layer 1 solution. Fig. 3 shows an example of this 

graph. Here, four train groups are given as input. Group 2 is optional. The bold clique on 
the graph shown that Group 4 is scheduled first, before Group 1, Group 2, which is not 
actually scheduled, and Group 3. 
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Figure 3. Example of a Layer 1 graph with 3 movable and 1 optional train groups. Bold 
edges represent a solution given by the sequence {S4, S1, NS2, S3}. 

 
A path on the Layer 2 graph, i.e., a TEG path, is a Layer 2 solution. The TEG considered is 
the one corresponding to the first train of the group. Timetables of the other trains are 
directly defined considering the strict periodicity constraints (enforced during the ACO 
solution) between trains of the same group.  

Each PS is constructed by the virtual ants by exploring a dedicated construction graph, 
with its own pheromone trail and heuristic information. Specifically, each ant starts 
choosing a Level 1 node, then, if this implies the schedule of a group, it builds a path on the 
corresponding Level 2 graph, before choosing the next Level 1 node. During the 
construction of the TEG path, interactions with already-built L2 solutions are taken into 
account. In particular, for a given group, the path is chosen among those that minimize (and 
possibly avoid) conflicts with already scheduled ones. Within this set, the path is 
constructed according to pheromone trail and heuristic information. This permits to 
prioritize the minimization of conflicts with respect to other objectives. This procedure 
continues until decisions are made for all groups at Level 1. 

. We model our MOACO after Max-Min Ant Systems (MMAS, Stützle and Hoos, 1997, 
2000), an ACO variant which proved effective for a large number of different combinatorial 
problem. We implement a clique pheromonal strategy for Layer 1 (Solnon and Bridge, 
2006), and a more classical path strategy for Layer 2. To the best of our knowledge, this 
hybridisation is  a novel contribution to the field of ACO. 

We extend the MMAS approach to the multi-objective variant following the multi-
colony architecture proposed by López-Ibáñez and Stützle (2012). Each colony mostly 
focuses on one objective, and it uses its own pheromone matrices and set of aggregation 
weights to blend together pheromone and heuristic information (relevant to different 
objectives) during the ants’ search. Colonies perform each iteration independently from 
each other. At the end of each iteration, the approximation of the Pareto Optimal Set is 
updated with the new solutions obtained. Previously obtained solutions of lower quality, 
are discarded. Finally, POS solutions update colonies’ pheromone matrices. To this 
purpose, the POS is split into equal-cardinality non-disjoint subsets, in such a way that 
solutions in each subset are the best according to an objective. Each subset of solutions 
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updates the pheromone of the colony which focuses on the objective in point. 
The proposed MOACO features a remarkable amount of parameters, which can hardly 

be tuned manually. The tuning will be performed by means of the IRACE tool (López-
Ibáñez et al., 2011). It automatically selects the best configuration of continuous, discrete 
and cardinal parameters among those defined as an input, considering a set of reference 
problem instances. This is an open-access state-of-the-art tuning procedure, which can be 
applied both to single and multi-objective problems. It is based on advanced machine 
learning techniques.  

5 The MILP formulation 

As anticipated, the MILP formulation takes care of further refining the MOACO 
solutions. By exploiting the periodicity tolerance of trains belonging to the same group, and 
by thoroughly exploring the neighbourhood of MOACO solutions, it produces conflict-free 
solutions and further improves their quality. To this purpose, time variable domains are 
tight intervals centred at the values belonging to the MOACO solutions. Hence, within these 
intervals: 

• The whole periodic train groups can shift in time; 
• Each single train of a group can change its station timing and track running time 

with respect to the group’s strictly periodic pattern. 

The restricted variable domains, allows (in principle) for a fast solution process. This 
process can either return the optimal solution of the restricted instance, or an infeasibility 
due to the modelling of conflicts as hard constraints.   

The MILP formulation is modelled after those proposed by Mannino et al. (2015) and 
Pellegrini et al. (2015). It is omitted here for lack of space. It minimizes the weighted sum 
of the objectives described in the introduction. The same set of aggregation weights which 
produced the original MOACO solution is used to this purpose. 

 

Figure 2. Graphical representation of the MILP formulation operation in the objectives 
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space. 
 
Figure 2Figure 2 provides a graphical representation of the operation of the MILP 

formulation stage in the objective function space. Two objectives are considered here. 
MOACO solutions are blue points. Some are conflict-free, other not (the red-circled ones). 
Dark blue points represent the POS provided by MOACO. Green points are MILP solutions 
obtained starting from MOACO ones. Not all MOACO solutions with residual conflict can 
be converted into a conflict free timetable (red crosses). A new POS is originated by the 
MILP solutions. Light green points represent MILP solutions which belong to this new 
POS, while dark green points do not. 

6 Conclusions 

This paper presents an overview of an original framework for the automatic generation 
of railway timetables, performed on a macroscopic infrastructure and operation model. This 
framework is to be integrated into a tool prototype to be used by Norwegian railways for 
strategic timetabling. 

The tool prototype will be a standalone executable, which will read the input dataset, 
invoke the timetabling algorithm, monitor the solution process and finally navigate, analyse 
and export solutions. A specifically-designed module of the tool will allow the user to edit, 
load and record custom configurations of the algorithm parameters, or to call an automated 
procedure based on the IRACE tool to perform a new algorithm tuning. 

The algorithmic framework is currently being tested on a set of instances, designed on 
the Trondheim and eastern Oslo nodes of Norwegian Railways. These two areas permit to 
define instances which cover a variety of operative conditions and with a scalable 
complexity in the input timetable data. This allows testing the algorithm performance in 
different application cases, representative of the real timetabling practice. 

An extensive testing campaign is currently being carried out on these instances, 
benefitting of the feedback of experienced timetable planners from both JDir and TrenoLab, 
who analyse the timetables produced by the tool. Our preliminary results are promising, 
since they highlight how the proposed framework is capable to properly handle real-size 
instances and to provide in reasonable time timetables that are deemed meaningful and 
realistic. They show that a proper tuning of the algorithm parameters is crucial to ensure a 
good performance, making it necessary to resort to automatic tuning procedures. 
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